Advertisement

Hydrogeology Journal

, Volume 16, Issue 5, pp 939–950 | Cite as

Flowpath structure in a limestone aquifer: multi-borehole logging investigations at the hydrogeological experimental site of Poitiers, France

  • O. Audouin
  • J. Bodin
  • G. Porel
  • B. Bourbiaux
Report

Abstract

Since 2002, a new hydrogeological experimental site (HES) has been developed in Poitiers, France. The overall research objective related to this site is to improve the understanding of flow and solute transport in carbonate aquifers. The benchmarking of various types of numerical models against the HES field data is one of the main research projects supported by three national scientific programs. Within this framework, the purpose of this report is to synthesize existing knowledge about both aquifer geology and flowpath structure, based on core analysis and well logging. The combined use of core-hole data, borehole logs and outcrop data provide valuable information about lithostratigraphy and fracturing. The comparison of flow-meter data with borehole images indicates that flowpaths in the HES aquifer are strongly constrained within (1) subhorizontal karstic structures and (2) subvertical fractures. The presence of karstic levels appears to be conditioned by the stratigraphy and are unevenly developed in the HES. The vertical interconnectivity between the three karstic levels seems to result from fractures occurrence in this limestone formation. Following the observations, data and interpretations, a conceptual model of the Dogger aquifer is proposed.

Keywords

Carbonate rocks Fractured rocks Borehole logging Flowpaths France 

Résumé

La vocation première du Site Expérimental Hydrogéologique (SEH) de Poitiers, France, est de fournir des données pertinentes-y compris des chroniques ou expériences long terme-pour la caractérisation, la quantification et la modélisation des transferts d’eau et de solutés dans les aquifères carbonatés. Depuis 2002, les investigations menées sur le SEH ont permis de recueillir une importante quantité de données concernant un aquifère calcaire captif de 100 m d’épaisseur. Ces données servent actuellement de support à un exercice de modélisation comparée (benchmark) soutenu par trois programmes scientifiques nationaux. Dans le cadre de ce projet, l’objectif ici est de synthétiser les connaissances actuelles relatives à la géologie et la structure des écoulements dans l’aquifère du Dogger. La structure lithostratigraphique et la fracturation de l’aquifère sont analysées à partir des carottes de forages, des affleurements, et des diagraphies de puits. L’analyse croisée des données de débitmétrie verticale et des imageries de parois des forages indique que les écoulements sont principalement associés à des structures karstiques subhorizontales et des fractures subverticales. Les niveaux karstiques sont irrégulièrement répartis sur le SEH mais apparaissent fortement corrélés avec des niveaux stratigraphiques précis. La connectivité hydraulique des différents niveaux karstiques semble liée à la fracturation des calcaires.

Resumen

Desde 2002, se desarrolló en Potiers, Francia, un sitio experimental hidrogeológico (SEH). El objetivo general de la investigación relacionada a este sitio es mejorar el entendimiento del flujo y transporte de solutos en acuíferos calcáreos. El punto de referencia de varios tipos de modelos numéricos utilizando los datos del SEH es uno de los principales proyectos de investigación financiados por tres programas científicos nacionales. Dentro de este marco, el propósito de este reporte es sintetizar el conocimiento existente tanto acerca de la geología como de la estructura de los caminos de flujo, basado en el análisis de testigos y perfiles de pozos. El uso combinado de testigos, perfiles de pozos e datos de afloramientos provee información valiosa acerca de la litoestratigrafía y el fracturamiento. La comparación de datos de medidores de flujo con imágenes de pozos indica que los caminos de flujo en el acuífero del SEH están fuertemente condicionados por (1) estructuras cársticas subhorizontales, y (2) fracturas subverticales. La presencia de niveles cársticos pareciera estar condicionada por la estratigrafía y estar desarrollada en forma no igualmente distribuida dentro del SHE. La interconectividad vertical entre tres niveles cársticos sería el resultado de la ocurrencia de fracturas en la formación de las calizas. En base a las observaciones, los datos e interpretaciones, se propone un modelo conceptual del acuífero Dogger.

Notes

Acknowledgements

We are grateful to the “Poitou-Charentes Water Research Program” (XIIe CPER), and to the French national research programs MACH-1 (Modelling of Heterogeneous Carbonate Aquifers-1. Flow Dynamics), ERO (Environmental Research Observatory), and HTHS (Hydrodynamic and Transfers in Hydrogeological Systems) for their financial support to this work.

References

  1. Audouin O, Bodin J (2007) Analysis of slug-tests with high-frequency oscillations. J Hydrol 334:282–289. DOI  10.1016/j.jhydrol.2006.10.009 CrossRefGoogle Scholar
  2. Bai T, Pollard DD (2000) Fracture spacing in layered rocks: a new explanation based on the stress transition. J Struct Geol 22:43-57. DOI  10.1016/S0191-8141(99)00137-6 CrossRefGoogle Scholar
  3. Bernard S (2005) Caractérisation hydrodynamique des réservoirs carbonatés fracturés: Application au Site Expérimental Hydrogéologique (SEH) de l’Université de Poitiers [Hydrodynamic characterization of fractured carbonated reservoirs: application at Hydrogeological Experimental Site of University of Poitiers]. PhD Thesis, University of Poitiers, FranceGoogle Scholar
  4. Bernard S, Delay F, Porel G (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers. J Hydrol 328:647–658. DOI  10.1016/j.jhydrol.2006.01.008 CrossRefGoogle Scholar
  5. Bourbiaux B, Callot JP, Gaumet F, Guiton M, Lenormand R, Mari JL (2006) Multi-scale characterization of an heterogeneous aquifer through the integration of geological, geophysical and flow data: a case study. Paper presented IAHR, Groundwater Hydraulics in Complex Environments, Toulouse, France, 12–14 June 2006Google Scholar
  6. Bourbiaux B, Callot JP, Doligez B, Fleury M, Gaumet F, Guiton M, Lenormand R, Mari JL, Pourpak H (2007) Multi-scale characterization of an heterogeneous aquifer through the integration of geological, geophysical and flow data: a case study. Oil Gas Sci Technol Rev IFP 62:347–373. DOI  10.2516/ogst:2007029 CrossRefGoogle Scholar
  7. Bourgueil B, Gabilly J (1971) Geological map 1/50 000 of Chauvigny, BRGM, Orléans, FranceGoogle Scholar
  8. Burbaud-Vergneaud M (1987) Fracturation et interactions socle-couverture: le seuil du Poitou [Fracturing and interactions crystalline basement overlays: the “Poitou threshold”]. PhD Thesis, University of Poitiers, FranceGoogle Scholar
  9. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27:526–534Google Scholar
  10. de Dreuzy J-R, Bodin J, Le Grand H, Davy P, Boulanger D, Battais A, Bour O, Gouze P, Porel G (2006) General database for ground water site information. Ground Water 44:743–749. DOI  10.1111/j.1745-6584.2006.00220.x Google Scholar
  11. Delay F, Porel G, Bernard S (2004) Analytical 2D model to invert hydraulic pumping tests in fractured rocks with fractal behavior. Geophys Res Lett 31:L16501. DOI  10.1029/2004GL020500 CrossRefGoogle Scholar
  12. Delay F, Kaczmaryk A, Ackerer P (2006) Inversion of interference hydraulic pumping tests in both homogeneous and fractal dual media. Adv Water Resour 30:314–334. DOI  10.1016/j.advwatres.2006.06.008 CrossRefGoogle Scholar
  13. Doveton JH, Merriam DF (2004) Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface. Chem Geol 206:249–258. DOI  10.1016/j.chemgeo.2003.12.027 CrossRefGoogle Scholar
  14. Gabilly J, Cariou E (1997) Guides géologiques régionaux: Poitou Vendee Charentes [Regional geological guide: Poitou Vendee Charentes]. Masson, Issy les Moulineaux Cedex, FranceGoogle Scholar
  15. Gillespie PA, Walsh JJ, Watterson J, Bonson CG, Manzocchi T (2001) Scaling relationships of joints and vein arrays from The Burren, Co. Clare, Ireland. J Struct Geol 23:183–201. DOI  10.1016/S0191-8141(00)00090-0 CrossRefGoogle Scholar
  16. Gonnin C, Cariou E, Branger P (1992) Les facteurs de contrôle de la sédimentation au début du Jurassique moyen sur le seuil du poitou et ses abords [Factors of control of sedimentation at the beginning of the Middle Jurassic on the Poitou threshold and its approaches]. C R Acad Sci Paris 305:853–859Google Scholar
  17. Gonnin C, Cariou E, Bassoullet J-P, Gabilly J, Mourier J-P (1994) La stratigraphie séquentielle, outil de datation régional complémentaire de la biostratigraphie : application à la reconstitution de la dynamique sédimentaire des séries bathoniennes de surface du seuil du Poitou (France) [The sequential stratigraphy, tool of regional dating complementary to the biostratigraphy: application to the reconstitution of the sedimentary dynamic of the surface bathonian series of the Poitou threshold (France)]. C R Acad Sci Paris 318:235–241Google Scholar
  18. Hansen CE, Fanchi JR (2003) Producer/injector ratio: the key to understanding pattern flow performance and optimizing waterflood design. SPE Reserv Evalu Eng 6:317–327Google Scholar
  19. Hendriks PHGM, Limburg J, Meijer RJd (2001) Full-spectrum analysis of natural γ-ray spectra. J Environ Radioact 53:365–380. DOI  10.1016/S0265-931X(00)00142-9 CrossRefGoogle Scholar
  20. Hess AE (1982) A heat-pulse flowmeter for measuring low velocities in boreholes. US Geol Surv Open-File Rep 82-699Google Scholar
  21. Hess AE (1987) Thermal-pulse flowmeter for measuring slow water velocities in boreholes. US Geol Surv Open-File Report 87-121Google Scholar
  22. Jegouzo P (1980) The South Armerican shear zone. J Struct Geol 2:39–47CrossRefGoogle Scholar
  23. Kaczmaryk A, Delay F (2007) Interference pumping tests in a fractured limestone (Poitiers-France): inversion of data by means of dual-medium approaches. J Hydrol 337:133–146. DOI  10.1016/j.jhydrol.2007.01.025 CrossRefGoogle Scholar
  24. Keys WS (1990) Borehole geophysics applied to ground-water investigations. Techniques of Water Resources Investigations, book 2, chapt. E-2, US Geological Survey, Reston, VAGoogle Scholar
  25. Martelet G, Calcagno P, Gumiaux C, Truffert C, Bitri A, Gapais D, Brun JP (2004) Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France). Tectonophysics 382:117–128CrossRefGoogle Scholar
  26. Muldoon MA, Simo JAT, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9:570–583. DOI  10.1007/s10040-001-0165-5 CrossRefGoogle Scholar
  27. Paillet FL (1993) Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers. J Appl Geophys 30:261–279CrossRefGoogle Scholar
  28. Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34:997–1010. DOI  10.1029/98WR00268 CrossRefGoogle Scholar
  29. Paillet FL, Reese RS (2000) Integrating borehole logs and aquifer tests in aquifer characterization. Ground Water 38:713–725CrossRefGoogle Scholar
  30. Paillet FL, Hess AE, Cheng CH, Hardin E (1987) Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping. Ground Water 25:28–40. DOI  10.1111/j.1745-6584.1987.tb02113.x CrossRefGoogle Scholar
  31. Prensky S (1992) Temperature measurements in boreholes: an overview of engineering and scientific applications. Log Anal 33:313–333Google Scholar
  32. Raddadi MC, Vanneau AA, Poupeau G, Carrio-Schaffhauser E, Arnaud H, Rivera A (2005) Interpretation of gamma-ray logs: the distribution of Uranium in carbonate plateform. C R Geosci 337:1457–1461. DOI  1.1016/j.crte.2005.08.009 CrossRefGoogle Scholar
  33. Schürch M, Buckley D (2002) Integrating geophysical and hydrochemical borehole log measurements to characterize the Chalk aquifer, Berkshire, United Kingdom. Hydrogeol J 10:610–627CrossRefGoogle Scholar
  34. Serra O (1985) Diagraphies différées: bases de l’interprétation. Tome 2: Interprétation des données diagraphiques. [Fundamentals of well-log interpretation, vol 2: the interpretation of logging data], Bull Centre Rech Explor-Prod Elf-Aquitaine, Mem 7Google Scholar
  35. US National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications, Washington, DCGoogle Scholar
  36. Van Schijndel LAE, Swinkels WJAM (2005) Waterflood pilot in a mature fractured carbonate reservoir. SPE Middle East Oil and Gas Show and Conference, MEOS, Proceedings, Aberdeen, Scotland, September 2005, pp 693–696Google Scholar
  37. Williams JH, Lane JW, Singha K, Haeni FP (2002) Application of advanced geophysical logging methods in the characterization of a fractured-sedimentary bedrock aquifer, Ventura County, California. US Geol Surv Water Resour Invest Rep 00-4083Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • O. Audouin
    • 1
    • 2
    • 3
  • J. Bodin
    • 1
    • 2
  • G. Porel
    • 1
    • 2
  • B. Bourbiaux
    • 4
  1. 1.Université de PoitiersFRE 3114 HydrASAPoitiers CedexFrance
  2. 2.CNRS/INSU, UMR 6532 HydrASAPoitiers CedexFrance
  3. 3.SEMM LOGGING, Les MaufrasVesdunFrance
  4. 4.Institut Français du Pétrole (IFP)Rueil-Malmaison CedexFrance

Personalised recommendations