Advertisement

Hydrogeology Journal

, Volume 16, Issue 5, pp 879–892 | Cite as

Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

  • Jonathan W. PetersonEmail author
  • Theresa A. O’Meara
  • Michael D. Seymour
Paper

Abstract

Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08–0.36 wt%). In the aqueous concentration range investigated (11–112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50–3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06–0.35 mm diameter), and the smallest quartz filter sand investigated (0.43–0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients (K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

Keywords

Antibiotics Adsorption Hydrochemistry Solute transport Laboratory experiments/measurements 

Résumé

Des expériences par lots ont été réalisées pour étudier l’adsorption de la céfapirine (un antibiotique très utilisé en vétérinaire) sur différentes tailles de sables à faible teneur en carbone organique (0.08–0.36% du poids total). Dans les concentrations aqueuses investies (11 à 112 μmol/L de céfapirine), l’adsorption sur des sables de quartz pratiquement purs (diamètre de 0.50–3.35 mm) est faible. Les isothermes ont une forme en S et représentent surtout une région d’adsorption minimum, où la décroissance de l’adsorption apparaît avec une augmentation de la concentration de la solution, suivie par une augmentation de l’adsorption à des concentrations plus importantes. L’adsorption de la céfapirine sur du sable (0.06–0.35 mm) de dune riche en quartz et contenant du feldspath et un filtre à sable quartzeux plus petit (0.43–0.50 mm), peut être décrit par des isothermes de sorption linéaires sur l’échelle de concentrations étudiées. Les coefficients de distribution (K d) se situent entre 0.94 et 3.45 L/kg. Pour tous les sables étudiés aucune relation systématique n’existe entre la taille des grains et l’importance de l’adsorption. L’adsorption de la céfapirine est corrélée positivement avec le rapport de feldspath (K-feldspath/(albite + Ca-plagioclase). La normalisation des coefficients de distribution par rapport au rapport de Feldspath est plus efficace que la normalisation par rapport au carbone organique à des variabilités de K d réduites dans les sables de dune étudiés.

Resumen

Experimentos en batch fueron realizados para investigar la adsorpción de cefapirina (un antibiotico veterinario usado ampliamente) en arenas de varios tamaños con bajo contenido de carbón orgánico total (0.08–0.36%pt.). En el rango de concentración acuosa investigado (11 to 112 μmol/L, de cefapirina), la adsorpción es baja en filtros de arenas con cuarzo casi puro (0.50–3.35 mm-diámetro). Las isotermas tienen forma-S y la mayoría muestran una región de adsorpción mínima, donde ocurre adsorpción decreciente con concentración de solución creciente, seguida por un incremento de adsorpción a concentraciones mayores. La adsorpción de cefapirina en dunas de arenas ricas en cuarzo y conteniendo feldespato (0.06–0.35 mm-diámetro), y en el filtro de arena más pequeño investigado (0.43–0.50 mm), puede ser descrita por isotermas de sorpción lineales en todo el rango de concentraciones investigado. Los coeficientes de distribución (K d) van de 0.94 a 3.45 L/kg. No existe relación sistemática entre la granulometría y la cantidad de adsorpción en ninguna de las arenas investigadas. La adsorpción de cefapirina está positivamente correlacionada con la razón de feldespato (K-feldespato/(albita + Ca-plagioclasa). La normalización de coeficientes de distribución de la razón de feldespato fue más efectiva que la normalización de carbón orgánico en la reducción de variabilidad de valores de K d en las dunas de arena investigadas.

Notes

Acknowledgements

The project was funded in part by a Howard Hughes Medical Institute Undergraduate Science Program Grant to Hope College, USA, and by the Michigan Space Grant Consortium. Additional financial support was provided by the Hope College Department of Chemistry and the Department of Geological and Environmental Sciences. The authors also thank W. Mungall, E. Hansen and K. Brown for advice and consultation regarding quantitative analysis. Critical reviews from three anonymous reviewers were invaluable.

References

  1. Barber LB II, Thurman EM, Runnells DD (1992) Geochemical heterogeneity in a sand and gravel aquifer: effect of sediment mineralogy and particle size on the sorption of chlorobenzenes. J Contam Hydrol 9:35–54CrossRefGoogle Scholar
  2. Bertsch PM, Seaman JC (1999) Characterization of complex mineral assemblages: implications for contaminant transport and environmental remediation. Proc Natl Acad Sci USA 96:3350–3357CrossRefGoogle Scholar
  3. Bethke CM, Brady PV (2000) How the Kd approach undermines ground water cleanup. Ground Water 38:435–443CrossRefGoogle Scholar
  4. Brady PV, Bethke CM (2000) Beyond the Kd approach. Ground Water 38:321–322Google Scholar
  5. Chander Y, Kumar K, Goyal SM, Gupta SC (2005) Antibacterial activity of soil-bound antibiotics. J Environ Qual 34:1952–1957CrossRefGoogle Scholar
  6. Chee-Sanford JC, Aminov RI, Krapac, IJ, Garriques-Jeanjean N, Mackie RI (2001) Occurrence and diversity of tetracycline resistant genes in lagoons and ground water underlying two swine production facilities. Appl Environ Microbiol 67:1494–1502CrossRefGoogle Scholar
  7. Chen Y, Brantley SL (1997) Temperature-and pH-dependence of albite dissolution rate at acid pH. Chem Geol 135:275–290CrossRefGoogle Scholar
  8. Clausen L, Fabricius I, Madsen L (2001) Adsorption of pesticides onto quartz, calcite, kaolinite and alpha-alumina. J Environ Qual 30:846–857Google Scholar
  9. Davis JL, Salmon JH, Papich MG (2005) Pharmacokinetics and tissue fluid distribution of cephalexin in the horse after oral and i.v. administration. J Vet Pharmacol Ther 28:425–431CrossRefGoogle Scholar
  10. Deutsch M, Burt EM, Vanlier KE (1958) Summary of ground-water investigations in the Holland Area, Michigan. Geological survey Division Report 20, State of Michigan Department of Conservation, Lansing, MIGoogle Scholar
  11. Djurdjevic PT, Jelikic-Stankov M, Lazarevic I (2001) The effects of surfactants on equilibria in aluminum (III) ion + ofloxacin solution and adsorption of ofloxacin on aluminum-oxide. Bull Chem Soc Jpn 74:1261–1271CrossRefGoogle Scholar
  12. Drever JI (1997) The geochemistry of natural waters: surface and groundwater environments, 3rd edn. Prentice Hall, Englewood Cliffs, NJ, 436 ppGoogle Scholar
  13. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York, 393 ppGoogle Scholar
  14. Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, Englewood Cliffs, NJ, 598 ppGoogle Scholar
  15. Figueroa RA, Leonard A, MacKay, AA (2004) Modeling tetracycline antibiotic sorption to clays. Environ Sci Technol 38:476–483CrossRefGoogle Scholar
  16. Ghidini S, Zanardi E, Varisco G, Chizzolini R (2002) Prevalence of molecules of beta-lactam antibiotics in bovine milk in Lombardia and Emilia Romagna (Italy). Ann Fac Medic Vet di Parma 22:245–252Google Scholar
  17. Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies on adsorption XI: a system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and measurement of specific surface areas of solids. J Chem Soc 3:3973–3993CrossRefGoogle Scholar
  18. Goyne KW, Zimmerman AR, Newalkar BL, Komarneni S, Brantley SL, Chorover J (2002) Surface charge of variable porosity Al2O3(s) and SiO2(s) adsorbents. J Porous Mater 9:243–256CrossRefGoogle Scholar
  19. Goyne KW, Chorover J, Kubicki JD, Zimmerman AR, Brantley SL (2005) Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J Colloid Interface Sci 283:160–170CrossRefGoogle Scholar
  20. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF (1995) Adsorption and desorption of different organic matter fractions on iron oxide. Geochem Cosmochim Acta 59:219–229CrossRefGoogle Scholar
  21. Holstege DM, Puschner B, Whitehead G, Galey FD (2002) Screening and mass spectral confirmation of beta-lactam antibiotic residues in milk using LC-MS/MS. J Agric Food Chem 50:406–411CrossRefGoogle Scholar
  22. Kanda R, Griffin P, James HA, Fothergill J (2003) Pharmaceutical and personal care products in sewage treatment works. J Environ Monit 5:823–830CrossRefGoogle Scholar
  23. Kim Y-H, Heinze TM, Kim S-J, Cerniglia CE (2004) Adsorption and clay-catalyzed degradation of erythromycin A on homoionic clays. J Environ Qual 33:257–264Google Scholar
  24. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic waste water contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211CrossRefGoogle Scholar
  25. Meyer MT, Bumgarner JE, Daughtridge JV, Kolpin D, Thurman EM, Hostetler KA (2000) Occurrence of antibiotics in liquid waste at confined animal feeding operations and in surface and ground water. In: Effects of animal feeding operations on water resources and the environment, US Geol Surv Open-File Rep 00–204, p 45Google Scholar
  26. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MAA, Phillips BL, Parise JB (2007) The structure of ferrihydrite, nanocrystalline material. Science 316:1726–1729CrossRefGoogle Scholar
  27. O’Day PA (1999) Molecular environmental geochemistry. Rev Geophys 37:249–274CrossRefGoogle Scholar
  28. Parfitt RL, Fraser AR, Farmer VC (1977) Adsorption on hydrous oxides. III: fulvic acid and humic acid on goethite, gibbsite and imogolite. J Soil Sci 28:289–296CrossRefGoogle Scholar
  29. Parker BL, Cherry JA, Chapman SW, Guilbeault MA (2003) Review and analysis of chlorinated solvent dense nonaqueous phase liquid distributions in five sandy aquifers. Vadose Zone J 2:116–137CrossRefGoogle Scholar
  30. Parks GA (1967) Aqueous surface chemistry of oxides and complex oxide minerals. In: Stumm W (ed) Equilibrium concepts in natural water systems, advances in chemistry series. Advances in Chemistry Series 67, American Chemical Society, Washington, DC, pp121–160Google Scholar
  31. Penn RL, Zhu C, Xu H, Veblen DR (2001) Iron oxide coatings on sand grains from the Atlantic coastal plain: high-resolution transmission electron microscopy characterization. Geology 29:843–846CrossRefGoogle Scholar
  32. Perkins D (2002) Mineralogy, 2nd edn. Prentice Hall, Englewood Cliffs, NJ, 483 ppGoogle Scholar
  33. Peterson EW, Davis RK, Orndorff HA (2000) 17 b-estradiol as an indicator of animal waste contamination in mantled karst aquifers. J Environ Qual 29:826–834Google Scholar
  34. Pregitzer KE (1972) Soil survey of Ottawa county Michigan, United States Department of Agriculture Soil Conservation Service, Washington, DC, 139 ppGoogle Scholar
  35. Roy WR, Krapac IG, Chou SFJ, Griffin RA (1992) Batch-type procedures for estimating soil adsorption of chemicals, EPA technical resource document, EPA/530-SW-87-006, EPA, Washington, DCGoogle Scholar
  36. Sassman SA, Lee LS (2005) Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environ Sci Technol 39:7452-7459CrossRefGoogle Scholar
  37. Schindler PW and Stumm W (1987) The surface chemistry of oxides, hydroxides, and oxide minerals. In: Stumm W (ed) Aquatic surface chemistry: chemical processes at the particle-water interface. Wiley, New York, 520 ppGoogle Scholar
  38. Smith JV (1998) Atmospheric weathering and silica-coated feldspar: analogy with zeolite molecular sieves, granite weathering, soil formation, ornamental slabs, and ceramics. Proc Natl Acad Sci USA 95:3366–3369CrossRefGoogle Scholar
  39. Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York, 234 ppGoogle Scholar
  40. Streng WH (1978) Microionization constants of commercial cephalosporins. J Pharm Sci 67:666–669CrossRefGoogle Scholar
  41. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Resour 32:3245–3260CrossRefGoogle Scholar
  42. Thiele-Bruhn S, Seibicke T, Schulten H-R, Leinweber P (2004) Sorption of sulfanomide pharmaceutical antibiotics on whole soils and particle-size fractions. J Environ Qual 33:1331–1342CrossRefGoogle Scholar
  43. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406CrossRefGoogle Scholar
  44. United States Department of Agriculture (USDA) (2005) Antimicrobial use on U.S. dairy operations, 2002 USDA:APHIS:VS:CEAH, pt. IV, No. N430.0905, National Animal Health Monitoring System, Fort Collins, COGoogle Scholar
  45. United States Pharmacopeial Convention Inc. (USP) (2007) Cephalosporins (veterinary-systemic). Veterinary Pharmaceutical Information. Rockville, MD. http://www.usp.org/audiences/veterinary. Cited 9 Oct 2007
  46. Winokur PL, Brueggemann A, DeSalvo DL, Hoffmann L, Apley MD, Uhlenhopp EK, Pfaller MA, Doern GV (2000) Animal and human multidrug-resistant, cephalosporin-resistant Salmonella isolates expressing a plasmid-mediated CMY-2 AmpC Beta-lactamase. Antimicrob Agents Chemother 44:2777–2783CrossRefGoogle Scholar
  47. Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139, 79 ppGoogle Scholar
  48. Wolters A, Steffens M (2005) Photodegradation of antibiotics on soil surfaces: laboratory studies on sulfadiazine in an ozone-controlled environment. Environ Sci Technol 39:6071–6078CrossRefGoogle Scholar
  49. Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: electron microscopic characterization. Geochim Cosmochim Acta 70:4600–4616CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jonathan W. Peterson
    • 1
    • 3
    Email author
  • Theresa A. O’Meara
    • 1
  • Michael D. Seymour
    • 2
  1. 1.Department of Geological and Environmental SciencesHope CollegeHollandUSA
  2. 2.Department of ChemistryHope CollegeHollandUSA
  3. 3.Enviromental Science DivisionEnvironmental Chemistry and Technology, Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations