Hydrogeology Journal

, Volume 16, Issue 4, pp 675–690 | Cite as

Influences of the unsaturated, saturated, and riparian zones on the transport of nitrate near the Merced River, California, USA

  • Joseph L. Domagalski
  • Steven P. Phillips
  • E. Randall Bayless
  • Celia Zamora
  • Carol Kendall
  • Richard A. WildmanJr
  • Janet G. Hering
Paper

Abstract

Transport and transformation of nitrate was evaluated along a 1-km groundwater transect from an almond orchard to the Merced River, California, USA, within an irrigated agricultural setting. As indicated by measurements of pore-water nitrate and modeling using the root zone water quality model, about 63% of the applied nitrogen was transported through a 6.5-m unsaturated zone. Transport times from recharge locations to the edge of a riparian zone ranged from approximately 6 months to greater than 100 years. This allowed for partial denitrification in horizons having mildly reducing conditions, and essentially no denitrification in horizons with oxidizing conditions. Transport times across a 50–100-m-wide riparian zone of less than a year to over 6 years and more strongly reducing conditions resulted in greater rates of denitrification. Isotopic measurements and concentrations of excess N2 in water were indicative of denitrification with the highest rates below the Merced River. Discharge of water and nitrate into the river was dependent on gradients driven by irrigation or river stage. The results suggest that the assimilative capacity for nitrate of the groundwater system, and particularly the riverbed, is limiting the nitrate load to the Merced River in the study area.

Keywords

USA Groundwater/surface-water relations Solute transport Unsaturated zone Groundwater protection 

Résumé

Le transport et la transformation des nitrates ont été étudiés le long d’un transect long d’un kilomètre dans un verger d’amandiers le long de la Merced River, en Californie (Etats-Unis), en environnement irrigué. Les dosages des nitrates dans l’eau des pores et les modélisations utilisant le modèle RZWQM (root zone water quality model) ont montré que près de 63% de l’azote utilisé était transporté à travers les 6.5 m de la zone non saturée. Les temps de transit depuis les lieux de réalimentation jusqu’à la bordure d’une zone ripicole étaient compris entre 6 mois environ et plus de 100 ans. Ceci a permis une dénitrification partielle dans les horizons relativement réducteurs, et quasiment aucune dénitrification dans les horizons à conditions oxydantes. Les temps de transit de moins d’un an à plus de 6 ans à travers une zone ripicole de 50 à 100 m de large, en conditions plus réductrices, ont généré des taux de dénitrification plus élevés. Les dosages isotopiques et les concentrations de N2 en excès dans les eaux étaient indicatrices des taux de dénitrification les plus élevés à l’aval dans la Merced River. Le flux d’eau et de nitrates vers la rivière était dépendant des gradients générés par l’irrigation et du niveau de la rivière. Les résultats suggèrent que la capacité d’assimilation des nitrates du système aquifère, en particulier le lit de la rivière, limite la charge en nitrates de la Merced River sur le secteur d’étude.

Resumen

Se ha evaluado el transporte y la transformación de los nitratos a lo largo de un transecto de 1 km desde un huerto de almendros hasta el Río Merced, California, USA, dentro de una zona de agricultura de regadío. Como indican las medidas de nitratos en el agua intersticial y la modelización utilizando el Modelo de Calidad del Agua en la Zona de la Raíz, alrededor de un 63% del nitrógeno aplicado se transporta a través de 6.5 m de zona no saturada. El tiempo de transporte desde los lugares de recarga hasta el límite de la zona ribereña oscila entre aproximadamente 6 meses hasta más de 100 años. Esto permite que exista denitrificación parcial en horizontes que tienen condiciones ligeramente reductoras, y esencialmente no exista denitrificación en horizontes con condiciones oxidantes. Los tiempos de transporte a lo largo de una zona ribereña de entre 50 a 100 m de ancho, de entre menos de un año a más de seis años y condiciones más fuertemente reductoras dan lugar a mayores rangos de denitrificación. Los resultados isotópicos y las concentraciones del exceso de N2 en el agua fueron indicativos de denitrificación con los rangos más altos bajo el Río Merced. La descarga de agua y nitrato en el río dependieron de los gradientes producidos por el regadío o del estadio del río. Los resultados sugieren que la capacidad asimilativa del sistema de aguas subterráneas para el nitrato, y particularmente el lecho del río, está limitando la carga de nitrato al Río Merced en el área de estudio.

References

  1. Ahuja LR, Rojas KW, Hanson JD, Shaffer MJ, Ma L (1999) Root zone water quality model. Water Resources, Highlands Ranch, CO, USAGoogle Scholar
  2. American Public Health Association (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DCGoogle Scholar
  3. Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in groundwater: study of nitrate from a large-flux septic system plume. Groundwater 36:975–982Google Scholar
  4. Bottcher JO, Strebel S, Voerkelius S, Schmidt HL (1990) Using isotope fraction of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J Hydrol 114:413–424CrossRefGoogle Scholar
  5. Burow KR, Stork SV, Dubrovsky NM (1998a) Nitrate and pesticides in groundwater in the eastern San Joaquin Valley, California: occurrence and trends. US Geol Surv Water Resour Invest Rep 98–4040, 33 ppGoogle Scholar
  6. Burow KR, Shelton JL, Dubrovsky NM (1998b) Occurrence of nitrate and pesticides in groundwater beneath three agricultural land-use settings in the eastern San Joaquin Valley, California, 1993–1995. US Geol Surv Water Resour Invest Rep 97–4284, 51 ppGoogle Scholar
  7. Burow KR, Shelton JL, Hevesi JA, Weissmann GS (2004) Hydrogeologic characterization of the Modesto area, San Joaquin Valley California. US Geol Surv Sci Invest Rep 2004–5232, 54 ppGoogle Scholar
  8. Burt TP, Matchett LS, Goulding KWT, Webster CP, Haycock NE (1999) Denitrification in riparian buffer zones: the role of floodplain hydrology. Hydrol Process 13:1451–1463CrossRefGoogle Scholar
  9. Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36(10):3011–3030CrossRefGoogle Scholar
  10. Busenberg E, Plummer LN, Bartholamay RC, Weyland JE (1998) Chloroflurocarbons, sulfur hexafluoride, and dissolved permanent gases in groundwater from selected sites in the Idaho National Engineering and Environmental Laboratory, Idaho, 1994–97. US Geol Surv Open-File Rep 98–274Google Scholar
  11. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28:453–477CrossRefGoogle Scholar
  12. Casciotti KL, Sigman DA, Hastings AG, Böhlke JK, Hilkert A (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912CrossRefGoogle Scholar
  13. Chappelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET, Vroblevsky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour Res 31:359–371CrossRefGoogle Scholar
  14. Coplen TB, Böhlke JK, Casciotti K (2004) Using dual-bacterial denitrification to improve δ15N determinations of nitrates containing mass-independent 17O. Rapid Commun Mass Spectrom 18:245–250CrossRefGoogle Scholar
  15. DiCarlo DA, Bauters TWJ, Darnault CJG, Steenhuis TS, Parlange JY (1999) Lateral expansion of preferential flow paths in sands. Water Resour Res 35:427–434CrossRefGoogle Scholar
  16. Dubrovsky NM, Kratzer CR, Brown LR, Gronberg JM, Burow KR (1998) Water Quality in the San Joaquin-Tulare Basins, California, 1992–95. US Geol Surv Circ 1159, 38 ppGoogle Scholar
  17. Fisher LH, Healy RW (2008) Water movement within the unsaturated zone in four agricultural areas of the Unites States. J Environ QualGoogle Scholar
  18. Fishman MJ (1993) Methods of analysis by the US Geological Survey National Water Quality Laboratory-Determination of inorganic and organic constituents in water and fluvial sediments. US Geol Surv Open-File Rep 93–125, 217 ppGoogle Scholar
  19. Fishman MJ, Friedman LC (1989) Methods for determination of inorganic substances in water and fluvial sediments. Techniques of Water-Resources Investigations, book 5, chap. A1, US Geological Survey, Reston, VA, 545 ppGoogle Scholar
  20. Green WH, Ampt CA (1911) Studies on soil physics, 1: flow of air and water through soils. J Agric Sci 4:1–24CrossRefGoogle Scholar
  21. Green CT, Fisher LH, Bekin BA (2008a) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ QualGoogle Scholar
  22. Green CT, Puckett LJ, Böhlke JK, Bekins BA, Phillips SP, Lauffman LJ, Denver JM, Johnson HM (2008b) Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States. J Environ QualGoogle Scholar
  23. Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the US Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92, 121 ppGoogle Scholar
  24. Haycock NE, Pinay G (1993) Nitrate retention in grass and popular vegetated riparian buffer strips during the winter. J Environ Qual 22:273–278CrossRefGoogle Scholar
  25. Healy RW, Ronan AD (1996) Documentation of computer program VS2DH for simulation of energy transport in variably saturated porous media-modification. US Geol Surv Water Resour Invest Rep 96–4230, 36 pp. Available online at http://pubs.er.usgs.gov/pubs/wri/wri964230. Cited 20 May 2007
  26. Heaton THE, Vogel JC (1981) “Excess air” in groundwater. J Hydrol 50:201–216CrossRefGoogle Scholar
  27. Hiscock KM, Lloyd JW, Lerner DN (1991) Review of natural and artificial denitrification of groundwater. Water Res 25:1099–1111CrossRefGoogle Scholar
  28. Hsieh PA, Wingle W, Healy RW (2000) VS2DI: a graphical software package for simulating fluid flow and solute or energy transport in variably saturated porous media. US Geol Surv Water Resour Invest Rep 99–4130, 16 ppGoogle Scholar
  29. Karr JR, Schlosser IJ (1978) Water resources and land-water interface. Science 201:229–234CrossRefGoogle Scholar
  30. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576Google Scholar
  31. Knowles R (1982) Denitrification. Microbiol Rev 46:43–70Google Scholar
  32. Lampe DC (2005) Agricultural chemicals: sources, transport, and fate. Agricultural Chemicals Team (ACT), National Water-Quality Assessment (NAWQA) Program’s Study Team. http://in.water.usgs.gov/NAWQA_ACT/index.shtml. Cited 25 October 2007
  33. Lee EA, Strahan AP (2003) Methods of analysis of the US geological survey organic geochemistry research group-determination of acetamide herbicides and their degradation products in water using online solid-phase extraction and liquid chromatography/mass spectrometry. US Geol Surv Open-File Rep 03–173, 17 ppGoogle Scholar
  34. Lowrance R, Todd R, Frail J Jr, Hendrickson O, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377CrossRefGoogle Scholar
  35. Lowrance R, Altier LS, Newbold JD, Schnabel RR, Groffman PM, Denver JM, Correll DL, Gilliam JW, Robinson JL, Brinsfield RB, Straver KW, Lucas WC, Todd AH (1995) Water quality functions of riparian forest buffer systems in the Chesapeake Bay Watersheds. US Environmental Protection Agency, Chesapeake Bay Program Report, EPA 903-R-95-004, USEPA, Annapolis, MD, USAGoogle Scholar
  36. Lowrance R, Altier LS, Williams RG, Inamdar SP, Sheridan JM, Bosch DD, Hubbard RK, Thomas DL (2000) REMM: the riparian ecosystem management model. J Soil Water Conserv 55:27–34Google Scholar
  37. Manassaram DM, Backer LC, Moll DB (2006) A review of nitrates in drinking water: maternal exposure and adverse reproductive and developmental outcomes. Environ Health Perspec 114:320–327CrossRefGoogle Scholar
  38. Mayer PM, Reynolds SK Jr, McCutchen MD, Canfield TJ (2007) Meta-analysis of nitrogen removal in riparian buffers. J Environ Qual 36:1172–1180CrossRefGoogle Scholar
  39. Mengis M, Schiff SL, Harris MC, English R, Aravena R, Elgood J, MacLean A (1999) Multiple geochemical and isotopic approaches for assessing groundwater NO3 elimination in a riparian zone. Groundwater 37:448–457Google Scholar
  40. Mueller DK, Hamilton PA, Helsel DR, Hitt KJ, Ruddy BC (1995) Nutrients in groundwater and surface waters of the united states-an analysis of data through 1992. US Geol Surv Water Resour Invest Rep 95–4031, 74 ppGoogle Scholar
  41. Naiman RJ, Decamps H (1997) The ecology of interfaces: riparian zones. Annual Rev Ecol Syst 28:621–658CrossRefGoogle Scholar
  42. National Oceanic and Atmospheric Administration (2005) California precipitation data accessed 14 November 2005. http://lwf.ncdc.noaa.gov/pub/data/coop-precip/california.txt. Cited 1 November 2006
  43. Perkins JH (1997) Geopolitics and the green revolution: wheat, genes, and the cold war. Oxford University Press, New YorkGoogle Scholar
  44. Phillips SP, Green CT, Burow KR, Shelton JL, Rewis DL (2007) Simulation of multiscale ground-water flow in part of the northeastern San Joaquin Valley, California. US Geol Surv Sci Invest Rep 2007–5009, 43 ppGoogle Scholar
  45. Pollock DW (1994) Source code and ancillary data files for the MODPATH particle tracking package of the ground-water flow model MODFLOW; version 3, release 1. US Geol Surv Open-File Rep 94-0463, 6 pp, 2 diskettesGoogle Scholar
  46. Puckett LJ (1995) Identifying the major sources of nutrient water pollution. Environ Sci Tech 29:408A–414ACrossRefGoogle Scholar
  47. Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292CrossRefGoogle Scholar
  48. Puckett LJ, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrologic, and age dating analysis to delineate redox processes and flow paths in the riparian zone of a glacial outwash aquifer-stream system. Water Resour Res 38. DOI 10.1029/2001WR000396
  49. Puckett LJ, Zamora C, Essaid H, Wilson JT, Johnson HM, Brayton MJ, Vogel JR (2008) Transport and fate of nitrate at the ground-water/surface-water interface. J Environ QualGoogle Scholar
  50. Rawls WJ, Gimenez D, Grossman R (1982) Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Trans ASAE 41:983–988Google Scholar
  51. Sanford WE, Shropshire RG, Solomon DK (1996) Dissolved gas tracers in groundwater: simplified injection, sampling, and analysis. Water Resour Res 32:1635–1642CrossRefGoogle Scholar
  52. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops: an energy combination theory. Quart J Roy Meteorol Soc 111:839–855CrossRefGoogle Scholar
  53. Sigman DM, Casciotti KL, Andreani MC, Barford C, Galanter M, Böhlke JK (2001 A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem 73:4145–4153CrossRefGoogle Scholar
  54. US Environmental Protection Agency (1993) Methods for the determination of inorganic substances in environmental samples, EPA/600/R-93/100, USEPA, Washington, DC, 172 ppGoogle Scholar
  55. US Environmental Protection Agency (2003) Factoids: Drinking Water and Groundwater Statistics for 2002. EPA 816-K-03-001. USEPA, Washington, DC, pp 1–10Google Scholar
  56. US Environmental Protection Agency (2006) Agricultural management practices for water quality protection, USEPA, Washington, DC, http://www.epa.gov/watertrain/agmodule/. Cited 26 April 2006
  57. US Environmental Protection Agency (2007) Drinking Water Contaminants. USEPA, Washington, DC, http://www.epa.gov/safewater/contaminants/index.html. Cited 27 March 2007
  58. Vogel JC, Talma AS, Heaton THE (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J Hydrol 50:191–200CrossRefGoogle Scholar
  59. Zamora C (2006) Estimating rates of exchange across the sediment/water interface in the lower Merced River, California. MSc Thesis, California State University, Sacramento, 110 ppGoogle Scholar
  60. Zaugg SD, Sandstrom MW, Smith SG, Fehlberg KM (1995) Methods of analysis of the US geological survey national water quality laboratory-determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring. US Geol Surv Open-File Rep 95–181, 49 ppGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Joseph L. Domagalski
    • 1
  • Steven P. Phillips
    • 1
  • E. Randall Bayless
    • 2
  • Celia Zamora
    • 1
  • Carol Kendall
    • 3
  • Richard A. WildmanJr
    • 4
  • Janet G. Hering
    • 5
  1. 1.US Geological SurveySacramentoUSA
  2. 2.US Geological SurveyIndianapolisUSA
  3. 3.US Geological SurveyMenlo ParkUSA
  4. 4.Department of Environmental Science and EngineeringCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations