Hydrogeology Journal

, Volume 16, Issue 5, pp 829–844

Effect of soil disturbance on recharging fluxes: case study on the Snake River Plain, Idaho National Laboratory, USA

Paper

Abstract

Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards’ equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts.

Keywords

Recharge Unsaturated zone USA Waste disposal Hydraulic properties 

Résumé

La perturbation de la structure du sol influence l’écoulement vers le bas de l’eau qui percole assez loin en profondeur pour recharger les aquifères. Les données d’expériences identiques menées sur un sol non-perturbé silto-limoneux et sur une tranchée à déchets adjacente et composée du même type de sol, mais perturbé, incluent (1) les propriétés hydrauliques saturées et non-saturées mesurées en laboratoire et sur le terrain (2) des profils de saturation en eau issus de tests d’infiltration de 24 h et 75 j de redistribution. Dans les sols non-perturbés, le front d’humidification ont très diffus au-dessus de 2 mètres de profondeur, et ne vont pas plus loin que 2 m en profondeur. L’analyse darcienne suggère un taux de recharge moyen inférieur à 2 mm/an. Dans les sols perturbés, les fronts d’humidification sont angulaires et l’infiltration initiale moins importante, l’eau s’écoule lentement sous 2 mètres, sans empêchements. Les simulations de l’équation de Richards suivant des conditions réalistes prédit les fronts d’humidification angulaires, tels qu’observés dans les sols perturbés. De telles simulations ont été adéquates seulement si elles commencent après une distribution initiale correspondant à environ 3 h d’infiltration. Toutefois ces simulations aux conditions initiales retardées restent correctes sur les 76 j de données. Les résultats globaux suggèrent que la perturbation du sol, bien que réduisant l’écoulement préférentiel, est à même d’augmenter la recharge en cassant les contrastes entre les différentes couches.

Resumen

La alteración estructural del suelo influye en el flujo descendiente de agua que percola a suficiente profundidad para convertirse en la recarga del acuífero. Los datos de experimentos idénticos en un suelo franco-limoso sin alteración estructural, y en una trinchera adyacente con residuos simulados compuesta del mismo material de suelo, pero alterada, incluyó (1) mediciones de campo y laboratorio de propiedades hidráulicas no saturadas y (2) perfiles transitorios de contenido de agua medidos en el campo a través de infiltración estancada durante 24 h y 75 d de redistribución. En los suelos sin alteración los frentes de humedad fueron altamente difusos por encima de 2 m de profundidad, y no se extendieron a profundidades mayores de 2m. El análisis Darciano sugiere un ritmo de recarga promedio menor a 2 mm/año. En suelo alterado, los frentes de humedad fueron nítidos y la infiltración inicial más lenta; el agua se movió lentamente por debajo de 2m sin impedimento obvio. Las simulaciones en base a la Ecuación de Richards en condiciones realísticas predijeron nítidos frentes de humedad, como se observó en los suelos alterados. Tales simulaciones fueron adecuadas para suelos sin alteración solo si se comenzaron a partir de una distribución de humedad post-inicial que incluyó cerca de 3 h de infiltración. Estas simulaciones de iniciación tardía permanecieron buenas a través de los 76 d de datos. Los resultados globales sugieren que el efecto neto de la alteración del suelo, aunque reduce flujo preferencial, puede ser el incremento en recarga mediante la perturbación de contrastes de capas.

Supplementary material

10040_2007_261_MOESM1_ESM.xls (92 kb)
ESM1Lab water retention, undisturbed (xls 94 KB)
10040_2007_261_MOESM2_ESM.xls (33 kb)
ESM2Lab water retention, disturbed (xls 18 KB)
10040_2007_261_MOESM3_ESM.xls (136 kb)
ESM3Field water content, undisturbed (xls 139 KB)
10040_2007_261_MOESM4_ESM.xls (12 kb)
ESM4Field water content, disturbed (xls 19 KB)
10040_2007_261_MOESM5_ESM.xls (144 kb)
ESM5Field matric pressure, undisturbed (xls 54 KB)
10040_2007_261_MOESM6_ESM.xls (106 kb)
ESM6Field matric pressure, disturbed (xls 50 KB)

References

  1. Albright WH, Benson CH, Gee GW, Abichou T, McDonald EV, Tyler SW, Rock SA (2006a) Field performance of a compacted clay landfill final cover at a humid site. J Geotech Geoenviron Eng 132(11):1393–1402CrossRefGoogle Scholar
  2. Albright WH, Benson CH, Gee GW, Abichou T, Tyler SW, Rock SA (2006b) Field performance of three compacted clay landfill covers. Vadose Zone J 5(4):1157–1171. DOI 10.2136/vzj2005.0134. http://vzj.scijournals.org/cgi/content/abstract/5/4/1157 Google Scholar
  3. Allmaras RR, Rickman RW, Ekin LG, Kimball BA (1977) Chiseling influences on soil hydraulic properties. Soil Sci Soc Amer J 41:796–803CrossRefGoogle Scholar
  4. Allmaras RR, Ward K, Douglas CL, Ekin LG (1982) Long-term cultivation effects on hydraulic properties of a Walla Walla silt loam. Soil Tillage Res 2:265–279CrossRefGoogle Scholar
  5. Andraski BJ (1996) Properties and variability of soil and trench fill at an arid waste-burial site. Soil Sci Soc Amer J 60:54–66CrossRefGoogle Scholar
  6. Arkley RJ (1963) Calculation of carbonate and water movement in soil from climatic data. Soil Sci 96:239–248CrossRefGoogle Scholar
  7. Azooz RH, Arshad MA, Franzluebbers AJ (1996) Pore size distribution and hydraulic conductivity affected by tillage in northwestern Canada. Soil Sci Soc Am J 60:1197–1201CrossRefGoogle Scholar
  8. Baker DE, Ahern CR (1989) Estimates of effective rooting depth for predicting available water capacity of burdekin soils, Queensland. Aust J Soil Res 27(2):439–454CrossRefGoogle Scholar
  9. Bartholomay RC, Knobel LL, Davis LC (1989) Mineralogy and grain size of surficial sediment from the Big Lost River drainage and vicinity, with chemical and physical characteristics of geologic materials from selected sites at the Idaho National Engineering Laboratory, Idaho. US Geol Surv Open File Rep 89–384Google Scholar
  10. Basile A, Ciollaro G, Coppola A (2003) Hysteresis in soil water characteristics as a key to interpreting comparisons of laboratory and field measured hydraulic properties. Water Resour Res 39(12), 1355. DOI 10.1029/2003WR002432
  11. Bouma J, van Rooyen DJ, Hole FD (1975) Estimation of comparative water transmission in two pairs of adjacent virgin and cultivated pedons in Wisconsin. Geoderma 13:73–88CrossRefGoogle Scholar
  12. Cecil LD, Pittman JR, Beasley TM, Michel RL, Kubik PW, Sharma P, Fehn U, Gove HE (1992) Water infiltration rates in the unsaturated zone at the Idaho National Engineering Laboratory estimated from chlorine-36 and tritium profiles, and neutron logging. In: Kharaka Y, Maest A (eds) Water rock interaction. Balkema, Rotterdam, The Netherlands, pp 709–714Google Scholar
  13. Chertkov VY, Ravina I (1998) Modeling the crack network of swelling clay soils. Soil Sci Soc Amer J 62(5):1162–1171CrossRefGoogle Scholar
  14. Constantz J, Herkelrath WN (1984) Submersible pressure outflow cell for measurement of soil water retention and diffusivity from 5 to 95°C. Soil Sci Soc Amer J 48(1):7–10CrossRefGoogle Scholar
  15. Davis LC, Pittman JR (1990) Hydrological, meteorological, and geohydrological data for an unsaturated zone study near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho-1987. US Geol Surv Open-File Rep 90–114Google Scholar
  16. Doherty J, Brebber L, Whyte P (1994) PEST: model-independent parameter estimation. Watermark Computing, Oxley, AustraliaGoogle Scholar
  17. Dunker RE, Hooks CL, Vance SL, Darmody RG (1995) Deep tillage effects on compacted surface-mined land. Soil Sci Soc Amer J 59(1):192–197CrossRefGoogle Scholar
  18. Gardner WR (1956) Calculation of capillary conductivity by the one-step method. Soil Sci Soc Amer Proc 20:317–320CrossRefGoogle Scholar
  19. Gee GW, Bauer A, Decker RS (1978) Physical analyses of overburden materials and mine land soils. In: Schaller FW, Sutton P (eds) Reclamation of drastically disturbed lands, 1st edn. American Society of Agronomy, Madison, WI, pp 665–686Google Scholar
  20. Hamblin AP, Tennant D (1981) The influence of tillage on soil water behavior. Soil Sci 132(3):233–339CrossRefGoogle Scholar
  21. Hayashi Y, Kosugi K, Mizuyama T (2006) Changes in pore size distribution and hydraulic properties of forest soil resulting from structural development. J Hydrol 331:85–102CrossRefGoogle Scholar
  22. Healy RW (1990) Simulation of solute transport in variably saturated porous media with supplemental information on modifications to the U.S. Geological Survey’s computer program VS2D. US Geol Surv Water Resour Invest Rep 90–4025Google Scholar
  23. Jayawardane NS, Prathapar SA (1992) Effect of soil loosening on the hydraulic properties of a duplex soil. Aust J Soil Res 30:959–975CrossRefGoogle Scholar
  24. Jenny H (1941) Factors of soil formation. McGraw-Hill, New YorkGoogle Scholar
  25. Jenny H, Leonard CD (1939) Functional relationships between soil properties and rainfall. Soil Sci 38:363–381Google Scholar
  26. Johnson CD, Skousen JG (1995) Minesoil properties of 15 abandoned mine land sites in West Virginia. J Environ Qual 24:635–643CrossRefGoogle Scholar
  27. Jury WA, Horton R (2004) Soil physics, 6th edn. Wiley, New YorkGoogle Scholar
  28. Kaminsky JF (1991) In situ characterization of unsaturated hydraulic properties of surficial sediments adjacent to the radioactive waste management complex, Idaho National Engineering Laboratory, Idaho. MSci Thesis, Idaho State University, USAGoogle Scholar
  29. Klute A (1982) Tillage effects on the hydraulic properties of soil: a review. In: Unger PW, Van Doren DM, Jr (eds) Predicting tillage effects on soil physical properties and processes. American Society of Agronomy, Madison, WI, pp 29–43Google Scholar
  30. Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity, laboratory methods. In: Klute A (ed) Methods of soil analysis, part I. Soil Science Society of America, Madison, WI, pp 687–732Google Scholar
  31. Lappala EG, Healy RW, Weeks EP (1987) Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media. US Geol Surv Water Resour Invest Rep 83–4099Google Scholar
  32. Leummens H, Bouma J, Booltink HWG (1995) Interpreting differences among hydraulic parameters for different soil series by functional characterization. Soil Sci Soc Amer J 59:344–351CrossRefGoogle Scholar
  33. Miller DE, Gardner WH (1962) Water infiltration into stratified soil. Soil Sci Soc Amer Proc 26:115–119CrossRefGoogle Scholar
  34. Mitchell AR, van Genuchten MT (1993) Flood irrigation of a cracked soil. Soil Sci Soc Amer J 57:490–497CrossRefGoogle Scholar
  35. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522CrossRefGoogle Scholar
  36. Nimmo JR (1992) Semiempirical model of soil water hysteresis. Soil Sci Soc Amer J 56(6):1723–1730CrossRefGoogle Scholar
  37. Nimmo JR, Stonestrom DA, Akstin KC (1994) The feasibility of recharge rate determinations using the steady-state centrifuge method. Soil Sci Soc Amer J 58:49–56CrossRefGoogle Scholar
  38. Nimmo JR, Shakofsky SM, Kaminsky JF, Lords GS (1999) Laboratory and field hydrologic characterization of the shallow subsurface at an Idaho National Engineering and Environmental Laboratory waste-disposal site. US Geol Surv Water Resour Invest Rep 99–4263Google Scholar
  39. Nimmo JR, Perkins KS, Lewis AM (2002) Steady-state centrifuge simultaneous determination of water transmission and retention properties. In: Dane JH, Topp GC (eds) Methods of soil analysis, part 4: physical methods. Soil Science Society of America, Madison, WI, pp 903––936Google Scholar
  40. Passioura JB (1977) Determining soil water diffusivities from one-step outflow experiments. Aust J Soil Res 15(1):1–8CrossRefGoogle Scholar
  41. Perillo CA, Gupta SC, Nater EA, Moncrief JF (1999) Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma 89(3):307–331CrossRefGoogle Scholar
  42. Perkins KS (2000) Hydrologic and meteorological data for an unsaturated-zone study area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1997 to 1999. US Geol Surv Open-File Rep 00–248Google Scholar
  43. Perkins KS (2003) Measurement of sedimentary interbed hydraulic properties and their hydrologic influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. US Geol Surv Water Resour Invest Rep 03–4048Google Scholar
  44. Perkins KS, Nimmo JR, Pittman JR (1998) Hydrologic and meteorological data for an unsaturated-zone study area near the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, 1990–1996. US Geol Surv Open-File Rep 98–99Google Scholar
  45. Pittman JR (1989) Hydrological and meteorological data for an unsaturated zone study near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho, 1985–1986. US Geol Surv Open-File Rep 89–74Google Scholar
  46. Pittman JR (1995) Hydrological and meteorological data for an unsaturated-zone study area near the Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho, 1988 and 1989. US Geol Surv Open-File Rep 95–112Google Scholar
  47. Quisenberry VL, Phillips RE (1976) Percolation of surface-applied water in the field. Soil Sci Soc Amer J 40(4):484–489CrossRefGoogle Scholar
  48. Quisenberry VL, Phillips RE (1978) Displacement of soil water by simulated rainfall. Soil Sci Soc Amer J 42(5):675–679CrossRefGoogle Scholar
  49. Richards LA (1931) Capillary conduction of liquids through porous materials. Physics 1:318–333CrossRefGoogle Scholar
  50. Rightmire CT, Lewis BD (1987) Hydrogeology and geochemistry of the unsaturated zone, Radioactive Waste Management Complex, Idaho National Engineering Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 87–4198Google Scholar
  51. Seyfried MS, Wilcox BP (2006) Soil water storage and rooting depth: key factors controlling recharge on rangelands. Hydrol Process 20:3261–3275CrossRefGoogle Scholar
  52. Shakofsky SM (1993) Changes in the hydraulic properties of a soil caused by construction of a waste trench at a radioactive waste disposal site. MSci Thesis, San Jose State University, USAGoogle Scholar
  53. Shakofsky SM (1995) Changes in soil hydraulic properties caused by construction of a simulated waste trench at the Idaho National Engineering Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 95–4058Google Scholar
  54. Shakofsky SM, Nimmo JR (1996) Unsaturated zone properties at a waste disposal site at the Idaho National Engineering Laboratory. In: Morganwalp DW and Aronson DA (eds) U.S. Geological Survey Toxic Substances Hydrology Program. Proceedings of the Technical Meeting, Colorado Springs, Colorado, 20–24 September 993. US Geol Surv Water Resour Invest Rep 94–4015, pp  949–953Google Scholar
  55. Tokunaga TK, Wan J, Olson KR (2002) Saturation-matric potential relations in gravel. Water Resour Res 38(10), 1214. DOI 10.1029/2001WR001242
  56. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Amer J 44:892–898CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.US Geological SurveyMenlo ParkUSA

Personalised recommendations