Hydrogeology Journal

, Volume 16, Issue 4, pp 727–735 | Cite as

Impact of land use change on groundwater quality in a typical karst watershed of southwest China: a case study of the Xiaojiang watershed, Yunnan Province

  • Yongjun Jiang
  • Cheng Zhang
  • Daoxian Yuan
  • Gui Zhang
  • Raosheng He
Report

Abstract

The impact of land-use change on the quality of groundwater in the Xiaotjiang watershed, China was assessed for the period 1982–2004. Groundwater samples were collected from 30 monitoring points across the watershed, and were representative of the various changes, determined by remote sensing and geographical information systems. The results indicate that 610 km2 (60% of the total watershed area) were subject to land-use change during the period. The most important changes were the conversion of 135 km2 of forested land to cultivated land, and 211 km2 of unused land to cultivated land. The main impact was ascribed to diffuse pollution from fertilizers applied to newly cultivated land, and from building development. Overall the groundwater pH value was significantly increased, as were the concentrations of ions \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), and Cl in groundwater whilst the concentrations of Ca2+ and \( {\text{HCO}}^{ - }_{3} \) declined. More precisely, in the regions where forested land and unused land were converted into cultivated land, the pH value and the concentrations of Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl increased whilst the concentrations of Ca2+ and \( {\text{HCO}}^{ - }_{3} \) declined. However in the region where cultivated land was converted into construction land, the pH value and the concentrations of Ca2+, Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{HCO}}^{ - }_{3} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl increased.

Keywords

Karst Land-use change Groundwater monitoring Xiaojiang watershed China 

Résumé

L’impact des changements de l’utilisation du territoire sur la qualité de l’eau souterraine dans le bassin versant de Xiaojiang, en Chine, a été évalué de 1982 à 2004. Des échantillons d’eau souterraine ont été récoltés à partir de 30 points d’observation éparpillés sur le bassin, représentant les divers changements déterminés par télédétection et système d’information géographique. Les résultats indiquent que 610 km2 (soit 60% de la surface du bassin) ont été sujets à des modifications de l’utilisation du territoire sur cette période. Les changements les plus importants furent la conversion de 135 km2 de forêt et 211 km2 de terres inutilisées en terres cultivées. Le principal impact est attribué à la pollution diffuse des engrais utilisés en agriculture et pour les bâtiments. De manière générale le pH de l’eau souterraine a augmenté significativement, ainsi que les concentrations des ions \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), et Cl, tandis que les concentration en Ca2+ et \( {\text{HCO}}^{ - }_{3} \) ont diminué. Plus précisément dans les régions transformées en terres cultivées, la valeur du pH et les concentrations en Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl ont augmenté tandis que les concentrations en Ca2+ et \( {\text{HCO}}^{ - }_{3} \) ont diminué. Toutefois dans les régions cultivées converties en zones de construction, le pH et les concentrations en Ca2+, Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{HCO}}^{ - }_{3} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl ont augmenté.

Resumen

El impacto del cambio en uso de la tierra en la calidad del agua en la cuenca Xiaojiang, China fue evaluado para el periodo 1982–2004. Muestras de agua subterránea fueron tomadas de 30 puntos de monitoreo a través de la cuenca, y fueron representativas de los múltiples cambios, determinados por sensores remotos y sistemas de información geográfica. Los resultados indican que 610 km2 (60% del área total de la cuenca) estaban sujetos a cambios de uso de la tierra durante el periodo estudiado. Los cambios más importantes fueron la conversión de 135 km2 de bosques a tierra cultivada, y 211 km2 de tierra sin uso (ociosa) a tierra cultivada. El impacto principal fue causado por contaminación difusa de fertilizantes aplicados a la tierra recientemente cultivada, y a desarrollo de construcciones. En general el pH en agua subterránea creció significantemente, al igual que las concentraciones de los iones \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), y Cl en agua subterránea mientras que las concentraciones de Ca2+ y \( {\text{HCO}}^{ - }_{3} \) decrecieron. Mas precisamente, en las regiones donde bosque y tierra ociosa fueron convertidas en tierra cultivada, el valor de pH y las concentraciones de Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl crecieron mientras las concentraciones de Ca2+ y \( {\text{HCO}}^{ - }_{3} \) decrecieron. Sin embargo en la región donde tierra cultivada fue convertida en construcciones, el valor de pH y las concentraciones de Ca2+, Mg2+, \( {\text{NH}}^{ + }_{4} \), \( {\text{HCO}}^{ - }_{3} \), \( {\text{SO}}^{{2 - }}_{4} \), \( {\text{NO}}^{ - }_{3} \), \( {\text{NO}}^{ - }_{2} \), Cl crecieron.

Notes

Acknowledgements

This research was funded by the key project of the Eleventh Five-Year Plan of China’s Ministry of Science and Technology, project code 2006BAC01A16; the Physical Geography Doctorial Program Open Foundation of Southwest University of China, no. 250-411109; the Doctorial Foundation of Southwest University of China, no. SWNUB2005035, and the Project of Ministry of Land and Resources, China, no. 2003104000.

References

  1. André L, Silva B, Hypolito R, Márcio HT (1999) Environmental diagnosis, monitoring and research of heavy metals behavior methodology in soil-water-contaminant system in a contaminated area in Santa Gertrudes, Brazil. In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 519–521Google Scholar
  2. Aravena R, Auge M, Bucich N (1999) Evaluation of the origin of groundwater nitrate in the city La Plata-Argentina, using isotope techniques. In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 323–327Google Scholar
  3. Barker JF, Cherry JA, Reindard M (1987) Final report: the occurrence and mobility of hazardous organic chemicals in groundwater at several Ontario landfills. Research Advisory Committee Project No. 118 PL for Environment Ontario, Institute of Groundwater Research, University of Waterloo, Waterloo, ONT, Canada, 148 ppGoogle Scholar
  4. Boers PCM (1996) Nutrient emission from agriculture in the Netherlands causes and remedies. Water Sci Technol 33:183–190CrossRefGoogle Scholar
  5. Chambel A, Duque J (1999) Hard rock aquifers of Alentejo region (south Portugal): contribution to the water and land use management. Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 171–176Google Scholar
  6. Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330CrossRefGoogle Scholar
  7. Dang A, Jia H, Yi S, Liu D (2003a) Application of ArcgGIS 8 desktop (in Chinese). Tsinghua University Press, Beijing, pp 302–339Google Scholar
  8. Dang A, Wang X, Chen X, Zhang J (2003b) The methods of processing of remote imagine (in Chinese). Tsinghua University Press, Beijing, pp 186–237Google Scholar
  9. Ellaway M, Finlayson B, Webb J (1998) The impact of land clearance on karst groundwater: a case study from Buchan, Victoria, Australia. In: Karst hydrogeology and human activities. IAH International Contributions to Hydrogeology, vol 20, Balkema, Rotterdam, The Netherlands, pp 51–52Google Scholar
  10. Fetter CW (1993) Contaminant hydrogeology. Macmillan, New York, 458 ppGoogle Scholar
  11. Fialho A, Chambel A, Duque J (1999) Relation between geomorphology, land use and water management in the gneissic and migmatitic aquifer system of Evora (south Portugal). In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 159–163Google Scholar
  12. Hatano R, Shinano T, Zhang T, Masahiko O, Li Z (2002) Nitrogen budgets and environmental capacity in farm systems in a large-scale karst region, southern China. Nutr Cycl Agroecosyst 63:139–149CrossRefGoogle Scholar
  13. Howard KWF, Eyles N, Livingstone S (1989) Municipal landfilling practice and its impact on groundwater resources in and around urban Toronto, Canada. Hydrogeol J 4(1):64–79CrossRefGoogle Scholar
  14. Jia Y, Yuan D (2003) The impact of land use change on karst water in Shuicheng basin of Guizhou province (in Chinese). Acta Geogr Sin 58(6):831–838Google Scholar
  15. Jiang Y, Yuan D, Kuang M, Wang J, Zhang G, He R (2004) Dynamic change analysis of landscape pattern in a typical karst watershed (in Chinese). Acta Geol Sin 24(12):2927–2931Google Scholar
  16. Jiang Y, Yuan D, Zhang C, Kuang M, Wang J, Xie S, Li L, Zhang G, He R (2006) Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: a case study of Xiaojiang watershed, Yunnan. Environ Geol 50(6):911–988CrossRefGoogle Scholar
  17. Kastrinos JR, White WB (1986) Seasonal, hydrogeologic and land-use controls on nitrate contamination of carbonate groundwater. In: Proc. Environmental Problems in Karst Terranes and Their Solutions Conference, Bowling Green, KY, National Water Well Association, Westerville, OH, pp 88–114Google Scholar
  18. Lahermo P, Backman B (1999) Nitrates in groundwater in Finland: the most endangering quality problem. In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 329–333Google Scholar
  19. Laws AT (1999) Using hydrogeological maps and data sets to combat salinization in western Australia. In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 73–78Google Scholar
  20. LeGrand HE (1984) Environmental problems in karst terrains. In: Burger A, Dubertret L (eds) Hydrogeology of karstic terrains. IAH International Contributions to Hydrogeology, vol 1, Balkema, Rotterdam, The Netherlands, pp 189–194Google Scholar
  21. Liang L, Toshiyuki N, Ryusuke H (2005) Nitrogen cycling with respect to environmental load in farm systems in southwest China. Nutr Cycl Agroecosyst 73:119–134CrossRefGoogle Scholar
  22. Libra RD, Hallberg GR (1998) Impacts of agriculture on water quality in the Big Spring basin, NE Iowa, U.S.A. In: Karst Hydrogeology and Human Activities. IAH International Contributions to Hydrogeology, vol 20, Balkema, Rotterdam, The Netherlands, pp 57–58Google Scholar
  23. Libra RD, Hallberg GR, Hoyer BE (1986) Agricultural impacts on groundwater quality: the Big Spring basin study, Iowa. In: Agricultural impacts on groundwater. National Water Well Association, Westerville, OH, pp 253–273Google Scholar
  24. Libra RD, Hallberg GR, Hoyer BE (1987) Impacts of agricultural chemicals on groundwater quality in Iowa. In: Fairchild DM (ed) Ground water quality and agricultural practices. Lewis, Chelsea, MI, pp 185–217Google Scholar
  25. Lichon M (1993) Human impacts on processes in karst terranes, with special reference to Tasmania. Cave Sci 20(2):55–60Google Scholar
  26. Lushichik A (1986) Formation of hydrochemical groundwater regime of karstifying carbonaceous deposits within the limits of irrigated landmasses of the Flat Crimea. In: Impact of agricultural activities on groundwater. IAH International Contributions to Hydrogeology, vol 5, Hanover, Germany, pp 307–315Google Scholar
  27. Milde K, Milde G, Ahlsdorf B (1988) Protection of highly permeable aquifers against contamination by xenobiotics. In: Karst hydrogeology and karst environment protection: proceedings of the 21st IAH Congress, part 1, Guilin, China, October 1988, Geological Publishing House, Beijing, pp 194–201Google Scholar
  28. Molerio LLF, Gutiérrez DJ (1998) Agricultural impacts on Cuban karstic aquifers. Karst Hydrogeology and Human Activities. IAH International Contributions to Hydrogeology vol 20, Balkema, Rotterdam, The Netherlands, pp 58–60Google Scholar
  29. Prohic E (1989) Pollution assessment in carbonate terranes. In: Hydrology of limestone terranes: annotated bibliography of carbonate rocks, vol 10. Heise, Hanover, pp 61–82Google Scholar
  30. Stephenson JB, Beck BF (1995) Management of the discharge quality of highway runoff in karst areas to control impacts to ground-water: a review of relevant literature. In: Proceedings of the 5th Multidisciplinary Conference on Sinkholes and the Environmental Impacts of Karsts, Galtinburg, Tennessee. Balkema, Rotterdam, pp 297–321Google Scholar
  31. Tim US, Jolly R (1994) Evaluation agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model. Environ Qual 23(1):25–35CrossRefGoogle Scholar
  32. Turner BL II, Skole D, Sanderson S (1995) Land use and land cover change science/research plan. IGBP Report No.35 and HDP Report No.7. IGBP, Stockholm and Geneva, pp 12–20Google Scholar
  33. Wakida FT, Lerner DN (2006) Potential nitrate leaching to groundwater from house building. Hydrol Process 20:2077–2081CrossRefGoogle Scholar
  34. Whitmore AP, Bradbury NJ, Johnson PA (1992) Potential contribution of plowed grassland to nitrate leaching. Agric Ecosys Environ 39(3–4):221–233CrossRefGoogle Scholar
  35. Williams PW (1993) Karst terrains: environmental changes and human impact. Catena 25(Suppl):251–268Google Scholar
  36. Witkowski AJ (1999) Change of sulphates concentrations in groundwater of Katowice regional water management council. In: Hydrogeology and land use management. IAH, Bratislava, Slovak Republic, pp 575–580Google Scholar
  37. Yuan D (1993) Environmental change and human impact on karst in southern China. Catena 25(Suppl):99–107Google Scholar
  38. Yuan D (2001) World correlation of karst ecosystem objectives and implementation plan (in Chinese). Adv Earth Sci 16(4):461–466Google Scholar
  39. Yuan D (2003) The geology environment and hydro-ecological problem of karst region (in Chinese). Land Resour South China 1:21–25Google Scholar
  40. Zhang C, Yuan D (2004) Hydrochemical variation of typical karst subterranean basin and its relationship with land use change (in Chinese). J Soil Water Conserv 18(5):134–137Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Yongjun Jiang
    • 1
    • 2
  • Cheng Zhang
    • 1
    • 3
  • Daoxian Yuan
    • 1
    • 2
    • 3
  • Gui Zhang
    • 4
  • Raosheng He
    • 4
  1. 1.School of Geographical SciencesSouthwest UniversityChongqingChina
  2. 2.Research Institute of Karst Environment and Rocky Desert ControlSouthwest UniversityChongqingChina
  3. 3.Institute of Karst GeologyCAGS, Karst Dynamics LaboratoryM L R GuilinChina
  4. 4.Institute of Geology Investigation in Yunnan ProvinceKunmingChina

Personalised recommendations