Hydrogeology Journal

, Volume 16, Issue 3, pp 447–459 | Cite as

Predicting long-term contamination potential of perched groundwater in a mine-waste heap using a random-walk method



Mine-waste heaps are potential long-term sources of contamination for surface-water courses and groundwater systems. Application of a novel physically based particle-tracking model to a mine-waste heap in northern England, UK, has enabled predictions to be made of the lifetime of contaminants leaching, revealing a pattern of source-mineral depletion. A mine-waste heap is conceptualised by a series of one-dimensional unsaturated “columns” in which active weathering of source minerals takes place. These columns drain into a saturated zone, through which the contaminants are transported to the heap discharge. Solute transport is simulated within the model by the random-walk method while reaction kinetics are incorporated to account for the timescales of source mineral depletion. Results reveal that the mine-waste heap is likely to remain polluting for several centuries, with the governing factor in the magnitude of pollution being the transport of the reactant, oxygen, to the source-mineral surfaces.


Contamination Groundwater flow Hydrochemistry Numerical modelling Solute transport 


Les terrils constituent des sources potentielles de contamination à long terme pour les cours d’eau superficiels et les systèmes aquifères. Un modèle novateur de traçage d’une particule, basé sur la physique, a été appliqué à un terril situé au nord de l’Angleterre (Royaume-Uni) ; il a permis de prédire la durée de lixiviation des contaminants, mettant en évidence un phénomène d’appauvrissement de la source en minéraux. Un terril est conceptualisé comme une série de “colonnes” unidimensionnelles non saturées, au sein desquelles se produit une altération des minéraux source. Ces colonnes sont drainées par la zone saturée, à travers laquelle les contaminants sont transportés vers l’exutoire du terril. Le transport des solutés est modélisé par la méthode du cheminement aléatoire, en intégrant les cinétiques de réaction afin de prendre en compte les échelles de temps de l’appauvrissement en minéraux. Les résultats révèlent que le terril est susceptible de persister comme une source de contamination sur plusieurs siècles, le facteur prépondérant sur l’ampleur de la pollution étant le transport du réactif, en l’occurrence l’oxygène, vers la surface des minéraux source.


Los montones de desechos de minería son a largo plazo fuentes potenciales de contaminación para los cursos de agua de superficie y sistemas del agua subterránea. La aplicación, a una pila de desechos de minería en el norte de Inglaterra, Reino Unido, de un nuevo modelo basado físicamente en rastreo de trayectoria de partículas, ha permitido hacer las predicciones sobre el periodo de vida de contaminantes lixiviados, revelando una tendencia de disminución de la fuente mineral. La pila de desechos de minería se conceptualizó mediante una serie de “columnas” no saturadas y unidimensionales, en las cuales tiene lugar la meteorización activa de las fuentes minerales. Estas columnas drenan hacia la zona saturada a través de la cual los contaminantes son transportados hacia la descarga de dicha pila. El transporte del Soluto es simulado dentro del modelo por el método de caminata al azar, mientras la cinética de la reacciones se incorporan para considerar las escalas de tiempo de disminución de la fuente mineral. Los resultados revelan, que es probable que la pila de desechos de minería siga contaminando durante varios siglos, siendo el transporte del reactante, oxígeno, para la fuente superficial de minerales, un factor principal en la magnitud de la contaminación.



This research was funded by the Natural Environment Research Council (NERC; Grant Reference GST/02/2060) under their Environmental Diagnostics Programme, and Northumbrian Water Group Research Centre Ltd. The authors would also like to acknowledge members of the HERO Group at Newcastle University for the collection and chemical analysis of samples from the study site.


  1. Bagtzoglou AC, Tompson AFB, Dougherty DE (1992) Projection functions for particle-grid methods. Numer Methods Partial Differ Equ 8:325–340CrossRefGoogle Scholar
  2. Bain JG, Blowes DW, Robertson WD, Frind EO (2000) Modelling of sulphide oxidation with reactive transport at a mine drainage site. J Contam Hydrol 41:23–47CrossRefGoogle Scholar
  3. Banwart SA, Malmström ME (2001) Hydrochemical modelling for preliminary assessment of minewater pollution. J Geochem Explor 74:73–97CrossRefGoogle Scholar
  4. Bayless ER, Olyphant GA (1993) Acid-generating salts and their relationship to the chemistry of groundwater and storm runoff at an abandoned mine site in southwestern Indiana, USA. J Contam Hydrol 12:313–328CrossRefGoogle Scholar
  5. Bennett JW, Comarmond MJ, Clark NR, Carras JN, Day S (1999) Intrinsic oxidation rates of coal reject measured in the laboratory. In: Goldsack D, Belzile N, Yearwood P, Hall G (eds) Proc of the Sudbury ’99 Mining and the Environment II Conf, Sudbury, ON, Canada, September 1999, pp 9–17Google Scholar
  6. Brown AD, Jurinak JJ (1989) Mechanism of pyrite oxidation in aqueous mixtures. J Environ Qual 18:545–550CrossRefGoogle Scholar
  7. Chang S, Berner RA (1999) Coal weathering and the geochemical carbon cycle. Geochim Cosmochim Acta 63:3301–3310CrossRefGoogle Scholar
  8. Deissmann G, Kistinger S, Kirkaldy JL, Pettit CM (2000) Predictive geochemical modelling of long-term environmental impacts from waste rocks. Proc 5th International Conference on Acid Rock Drainage, Denver, CO, May 2000, pp 743–750Google Scholar
  9. de Marsily G (1986) Quantitative hydrogeology: groundwater hydrology for engineers. American, San Diego, CAGoogle Scholar
  10. Elberling B, Nicholson RV, David DJ (1993) Field evaluation of sulphide oxidation rates. Nord Hydrol 24:323–338Google Scholar
  11. Eriksson N, Gupta A, Destouni G (1997) Comparative analysis of laboratory and field tracer tests for investigating preferential flow and transport in mining waste rock. J Hydrol 194:143–163CrossRefGoogle Scholar
  12. Evans KA, Gandy CJ, Banwart SA (2003) Mineralogical, numerical and analytical studies of the coupled oxidation of pyrite and coal. Mineral Mag 67:381–398CrossRefGoogle Scholar
  13. Frost RC (1979) Evaluation of the rate of decease in the iron content of water pumped from a flooded mine shaft in County Durham, England. J Hydrol 40:101–111CrossRefGoogle Scholar
  14. Gandy CJ (2005) An object-oriented particle tracking approach to modelling pyrite oxidation and pollutant transport in mine spoil heaps. In: Loredo J, Pendás F (eds) Proc 9th International Mine Water Association Congress, Oviedo, Spain, September 2005, pp 161–167Google Scholar
  15. Gandy CJ, Younger PL (2003) Effect of a clay cap on oxidation of pyrite within mine spoil. Q J Eng Geol Hydrogeol 36:207–215CrossRefGoogle Scholar
  16. Gandy CJ, Younger PL (2007) An object-oriented particle tracking code for pyrite oxidation and pollutant transport in mine spoil heaps. J Hydroinform 9:293−304Google Scholar
  17. Gerke HH, Molson JW, Frind EO (1998) Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. J Hydrol 209:166–185CrossRefGoogle Scholar
  18. Glover HG (1983) Mine water pollution: an overview of problems and control strategies in the United Kingdom. Water Sci Technol 15:59–70Google Scholar
  19. Guo W, Parizek RR, Rose AW (1994) The role of thermal convection in resupplying oxygen to strip coal-mine spoil. Soil Sci 158:47–55CrossRefGoogle Scholar
  20. Holmes PR, Crundwell FK (2000) The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim Cosmochim Acta 64:263–274CrossRefGoogle Scholar
  21. Jarvis AP, Younger PL (1999) Design, construction and performance of a full-scale compost wetland for mine-spoil drainage treatment at Quaking Houses. Chart Inst Water Environ Manage 13:313–318CrossRefGoogle Scholar
  22. Jaynes DB, Rogowski AS, Pionke HB, Jacoby EL (1983) Atmosphere and temperature changes within a reclaimed coal strip mine. Soil Sci 136:164–177CrossRefGoogle Scholar
  23. Jönsson J, Lövgren L (2000) Sorption properties of secondary iron precipitates in oxidised mining waste. Paper presented at the 5th international Conference on Acid Rock Drainage, Denver, CO, 21–24 May 2000Google Scholar
  24. Kemp P, Griffiths J (1999) Quaking Houses: art, science and the community: a collaborative approach to water pollution. Carpenter, Charlbury, UKGoogle Scholar
  25. Kinzelbach W (1988) The random walk method in pollutant transport simulation. In: Custodio E, Gurgui A, Lobo Ferreira JP (eds) Groundwater flow and quality modelling. Reidel, Rotterdam, The Netherlands, pp 227–245Google Scholar
  26. Kinzelbach W, Uffink GJM (1991) The random walk method and extensions in groundwater modelling. In: Bear J, Corapcioglu MY (eds) Transport processes in porous media. Kluwer, Dordrecht, The Netherlands, pp 763–787Google Scholar
  27. Kitanidis PK (1994) Particle-tracking equations for the solution of the advection-dispersion equation with variable coefficients. Water Resour Res 30:3225–3227CrossRefGoogle Scholar
  28. Li M (2000) Unsaturated flow and solute transport observations in large waste rock columns. Proc 5th International Conference on Acid Rock Drainage, Denver, CO, 21–24 May 2000, pp 247–256Google Scholar
  29. McKibben MA, Barnes HL (1986) Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta 50:1509–1520CrossRefGoogle Scholar
  30. Millero FJ (1985) The effect of ionic interactions on the oxidation of metals in natural waters. Geochim Cosmochim Acta 49:547–553CrossRefGoogle Scholar
  31. Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Geochim Cosmochim Acta 55:471–482CrossRefGoogle Scholar
  32. Newman LL, Herasymuik GM, Barbour SL, Fredlund DG, Smith T (1997) The hydrogeology of waste rock dumps and a mechanism for unsaturated preferential flow. Proc 4th International Conference on Acid Rock Drainage, Vancouver, 31 May−6 June 1997, pp 551–565Google Scholar
  33. Nichol C, Smith L, Beckie R (2000) Hydrogeologic behaviour of unsaturated waste rock: an experimental study. Proc 5th International Conference on Acid Rock Drainage, Denver, CO, 21–24 May 2000, pp 215–224Google Scholar
  34. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Kittrick JS, Fanning DS, Hosser LR (eds) Acid sulphate weathering. SSSA Spec Publ, vol 10, Soil Science Society of America, Madison, WI, pp 37–56Google Scholar
  35. Prickett TA, Naymik TG, Lonnquist CG (1981) A “random-walk” solute transport model for selected groundwater quality evaluations. Bulletin 65, Illinois State Water Survey, Champaign, IllGoogle Scholar
  36. Ritchie AIM, Miskelly P (2000) Geometric and physico-chemical properties determining sulphide oxidation rates in waste rock dumps. Proc 5th International Conference on Acid Rock Drainage, Denver, CO, 21–24 May 2000, pp 277–287Google Scholar
  37. Salamon P, Fernàndez-Garcia D, Gómez-Hernàndez JJ (2006) A review and numerical assessment of the random walk particle tracking method. J Contam Hydrol 87:277–305CrossRefGoogle Scholar
  38. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123CrossRefGoogle Scholar
  39. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and minesoils. EPA 600/2–78–054. Environmental Protection Agency, Washington, DCGoogle Scholar
  40. Strömberg B, Banwart S (1994) Kinetic modelling of geochemical processes at the Aitik mining waste rock site in northern Sweden. Appl Geochem 9:583–595CrossRefGoogle Scholar
  41. Sung W, Morgan JJ (1980) Kinetics and product of ferrous ion oxygenation in aqueous systems. Environ Sci Technol 14:561–568CrossRefGoogle Scholar
  42. Tompson AFB, Gelhar LW (1990) Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour Res 26:2541–2562CrossRefGoogle Scholar
  43. Tompson AFB, Schafer AL, Smith RW (1996) Impacts of physical and chemical heterogeneity on cocontaminant transport in a sandy porous medium. Water Resour Res 32:801–818CrossRefGoogle Scholar
  44. Valocchi AJ, Quinodoz HAM (1989) Application of the random walk method to simulate the transport of kinetically adsorbing solutes. In: Abriola LM (ed) Groundwater contamination, IAHS Publication Number 185, IAHS, Wallingford, UK, pp 35–42Google Scholar
  45. Wehrli B (1990) Redox reactions of metal ions at mineral surfaces. In: Stumm W (ed) Aquatic chemical kinetics: reaction rates of processes in natural waters. Wiley, New YorkGoogle Scholar
  46. Wunderly MD, Blowes DW, Frind EO, Ptacek CJ (1996) Sulphide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: a numerical model. Water Resour Res 32:3173–3187CrossRefGoogle Scholar
  47. Younger PL (1995) Hydrogeochemistry of minewaters flowing from abandoned coal workings in County Durham. Q J Eng Geol 28:101–113CrossRefGoogle Scholar
  48. Younger PL (1997) The longevity of minewater pollution: a basis for decision-making. Sci Total Environ 194/195:457–466CrossRefGoogle Scholar
  49. Younger PL (2000) Predicting temporal changes in total iron concentrations in groundwaters flowing from abandoned deep mines: a first approximation. J Contam Hydrol 44:47–69CrossRefGoogle Scholar
  50. Younger PL, Banwart SA (2002) Time-scale issues in the remediation of pervasively-contaminated groundwaters at abandoned mine sites. In: Oswald SE, Thornton SF (eds) Groundwater quality: natural and enhanced restoration of groundwater pollution. IAHS Publication no. 275, IAHS, Wallingford, UK, pp 585–591Google Scholar
  51. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  52. Zheng C, Bennett GD (2002) Applied contaminant transport modeling. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Hydrogeochemical Engineering Research and Outreach (HERO), Institute for Research on Environment and SustainabilityNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations