Hydrogeology Journal

, Volume 16, Issue 3, pp 483–497 | Cite as

Estimating groundwater evapotranspiration rates using diurnal water-table fluctuations in a semi-arid riparian zone

Paper

Abstract

In semi-arid climates, phreatophytes draw on shallow aquifers, and groundwater evapotranspiration (ETG) is a principal component of groundwater budgets. Diurnal water table fluctuations, which often are a product of ETG, were monitored in the riparian zone of Red Canyon Creek, Wyoming, USA. These fluctuations were higher in a riparian wetland (2–36 mm) than a grass-covered meadow (1–6 mm). The onset and cessation of water-table fluctuations correspond to daily temperatures relative to freezing. Spatial differences were due to vegetation type and specific yield, while temporal changes were due to vegetation dormancy. Ratios of ETG to potential evapotranspiration (PET), Kc,GW, were similar to ratios of actual evapotranspiration (ET) to PET, Kc, in semi-arid rangelands. Before vegetation senescence, Kc,GW increased between precipitation events, suggesting phreatophytes pull more water from the saturated zone as soil moisture decreases. In contrast, Kc decreases with soil moisture following precipitation events as ET becomes increasingly water-limited. Error in ETG is primarily from estimates of specific yield (Sy), which is difficult to quantify in heterogeneous sediments. ETG values may be more reliable because the range of acceptable Sy is smaller than Kc and Sy does not change with vegetation type or soil moisture.

Keywords

Diurnal water table Evapotranspiration Arid regions Phreatophytes USA 

Résumé

Sous les climats semi-arides, les plantes qui puisent dans les aquifères phréatiques et l’évapotranspiration (ETG) sont les composantes principales des bilans hydrogéologiques. Les fluctuations diurnes du niveau de la nappe, qui sont souvent le résultat de l’ ETG, ont été suivies dans la zone riparienne du Canyon de Red Creek, au Wyoming, USA. Ces fluctuations étaient plus importantes dans une zone riparienne marécageuse (2 à 36 mm) que dans une prairie herbeuse (1 à 6 mm). Le début et la cessation des fluctuations de la nappe correspondent aux températures journalières par rapport au gel. Les différences spatiales étaient dues au type de végétation et à la porosité efficace, tandis que les changements dans le temps étaient dus à la dormance des plantes. Les taux de l’ETG par rapport à l’évapotranspiration potentielle (PET), Kc,GW, sont similaires aux taux de l’évapotranspiration réelle (ET) par rapport à la PET, Kc, dans les prairies semi-arides. Avant la sénescence végétale, Kc,GW augmente entre les évènements pluvieux, ce qui laisse supposer que les plantes puisent plus d’eau dans la zone saturée lorsque l’humidité du sol diminue. Au contraire, Kc décroît avec l’humidité du sol après les précipitations alors que l’ET devient de plus en plus limitée. L’erreur sur l’ ETG `est liée aux estimations de la porosité efficace ( Sy), qui est difficile à quantifier dans les sédiments hétérogènes. Les valeurs d’ETG pourraient être plus fiables car l’échelle des valeurs de Sy acceptables est plus restreinte que pour Kc et le Sy ne varie pas avec le type de végétation ou l’humidité du sol.

Resumen

En climas semiaridos, los freatofitos consumen agua de los acuiferos someros, y la evapotranspiración (ETG) es un componente principal en los balances hídricos. Las fluctuaciones diurnas del nivel de agua subterránea, que frecuentemente son un producto de ETG, fueron monitoreadas en la zona rivereña de Red Canyon Creek, Wyoming, EU. Estas fluctuaciones fueron mayores en un humedal rivereño (2–36 mm) que en una pradera cubierta por pasto (1–6 mm). La aparición y finalización de las fluctuaciones de agua subterránea corresponden con temperaturas diarias relacionadas con congelamiento. Las diferencias espaciales se debieron al tipo de vegetación y rendimiento específico, mientras que los cambios temporales se debieron a vegetación latente. Los radios de ETG con evapotranspiración potencial (PET), Kc,GW, fueron similares a los radios de la evapotranspiración real (ET) con PET, Kc, en tierras de pastoreo semi-aridas. Antes que la vegetación envejeciera, la razón Kc,GW, incrementó entre eventos de precipitación, sugiriendo que los freatofitos tomán más agua de la zona saturada en la medida que la humedad del suelo decrece. En contraste, Kc decrece con la humedad del suelo que sigue a los eventos de precipitación, al mismo tiempo que ET se vuelve crecientemente limitado al agua. El error en ETG proviene principalmente de las estimaciones de rendimiento específico ( Sy), el cual es difícil de cuantificar en sedimentos heterogéneos. Los valores de ETG podrían ser más confiables debido a que el rango aceptable de Sy es más pequeño que Kc y Sy no cambia con el tipo de vegetación o humedad del suelo.

Notes

Acknowledgements

This work was supported by the National Science Foundation under grant number 0450317. I would like to thank the University of Missouri for supporting the fieldwork for this project and the Nature Conservancy of Wyoming for access to the research site. I also thank two anonymous reviewers and the associate editor of the Hydrogeology Journal for their constructive comments that improved the quality of the manuscript.

References

  1. Bailey RG (1995) Descriptions of the ecoregions of the United States. Miscellaneous Publication No. 1391, US Forest Service, Washington, DCGoogle Scholar
  2. Banta ER (2000) MODFLOW 2000, the US Geological Survey modular ground-water model: documentation of packages for simulating evapotranspiration with a segmented function (ETS1) and drains with return flow (DRT1), US Geol Surv Open-File Rep 00-466, 127 ppGoogle Scholar
  3. Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP, Jin W, Billinger MA, Zhan XY (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Water Resour Res 43, W02404. DOI 10.1029/2005WR004627
  4. Chen XH (2007) Hydrologic connections of a stream-aquifer-vegetation zone in south-central Platte River valley, Nebraska. J Hydrol 333:554–568CrossRefGoogle Scholar
  5. Cooper DJ, Sanderson JS, Stannard DI, Groeneveld DP (2006) Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community. J Hydrol 325:21–34CrossRefGoogle Scholar
  6. Dolan TJ, Hermann AJ, Bayley SE, Zoltek J (1984) Evapotranspiration of a Florida, USA, freshwater wetland. J Hydrol 74:355–371CrossRefGoogle Scholar
  7. Engel V, Jobbagy EG, Stieglitz M, Williams M, Jackson RB (2005) Hydrological consequences of eucalyptus afforestation in the argentine pampas. Water Resour Res 41, W10409. DOI 1029/2004WR003761
  8. Fisher JB, DeBiase TA, Qi Y, Xu M, Goldstein AH (2005) Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environ Model Softw 20:783–796CrossRefGoogle Scholar
  9. Flerchinger GN, Hanson CL, Wight JR (1996) Modeling evapotranspiration and surface energy budgets across a watershed. Water Resour Res 32:2539–2548CrossRefGoogle Scholar
  10. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  11. Gerla PJ (1992) The relationship of water-table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands 12:91–98Google Scholar
  12. Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109CrossRefGoogle Scholar
  13. Kurc SA, Small EE (2004) Dynamics of evapotranspiration in semiarid grassland and shrubland ecosystems during the summer monsoon season, central New Mexico. Water Resour Res 40(9), W0930515. DOI 10.1029/2004WR003068
  14. Lautz LK, Siegel DI (2006) Modeling surface and ground water mixing in the hyporheic zone using MODFLOW and MT3D. Adv Water Resour 29:1618–1633CrossRefGoogle Scholar
  15. Lautz LK, Siegel DI, Bauer RL (2006) Impact of debris dams on hyporheic interaction along a semi-arid stream. Hydrol Process 20:183–196CrossRefGoogle Scholar
  16. Loheide SP, James J, Butler J, Gorelick SM (2005) Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour Res 41, W07030. DOI 07010.01029/02005WR003942 CrossRefGoogle Scholar
  17. Meyboom P (1967) Groundwater studies in the Assiniboine River drainage basin, Part II: hydrologic characteristics of phreatophytic vegetation in south-central Saskatchewan. Geol Surv Can Bull 139:1–64Google Scholar
  18. Nichols WD (1994) Groundwater discharge by phreatophyte shrubs in the Great Basin as related to depth to groundwater. Water Resour Res 30:3265–3274CrossRefGoogle Scholar
  19. NOAA-NCDC (2006) Program overview. http://www.ncdc.noaa.gov/oa/climate/uscrn/. Cited March 2007
  20. Patten DT (1998) Riparian ecosystems of semi-arid North America: diversity and human impacts. Wetlands 18:498–512CrossRefGoogle Scholar
  21. Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond A193:120–146Google Scholar
  22. Prater MR, DeLucia EH (2006) Non-native grasses alter evapotranspiration and energy balance in Great Basin sagebrush communities. Agric For Meteorol 139:154–163CrossRefGoogle Scholar
  23. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:31–92CrossRefGoogle Scholar
  24. Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191:266–289CrossRefGoogle Scholar
  25. Schilling KE (2007) Water table fluctuations under three riparian land covers, Iowa (USA). Hydrol Process 21:2415–2424, DOI 10.1002/hyp.6393 CrossRefGoogle Scholar
  26. Schilling KE, Kiniry JR (2007) Estimation of evapotranspiration by reed canary grass using field observations and model simulations. J Hydrol 337:356–363CrossRefGoogle Scholar
  27. Shah N, Nachabe M, Ross M (2007) Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 45:329–338CrossRefGoogle Scholar
  28. Shuttleworth WJ (1993) Evaporation. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53Google Scholar
  29. Teuling AJ, Seneviratne SI, Williams C, Troch PA (2006) Observed timescales of evapotranspiration response to soil moisture. Geophys Res Lett 33, L23408. DOI 10.1029/2006GL028178
  30. Thompson SA (1999) Hydrology for water management. Balkema, Brookfield, VTGoogle Scholar
  31. Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  32. White WN (1932) A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: results of investigations in Escalante Valley, Utah. US Geol Surv Water Suppl Pap 659-AGoogle Scholar
  33. Wight JR, Hanson CL (1990) Crop coefficients for rangeland. J Range Manage 43:482–485CrossRefGoogle Scholar
  34. Winter TC, Rosenberry DO, Sturrock AM (1995) Evaluation of 11 equations for determining evaporation for a small lake in the north central United States. Water Resour Res 31:983–993CrossRefGoogle Scholar
  35. Zhang YK, Shilling KE (2006) Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis. J Hydrol 319:328–338CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Forest and Natural Resources ManagementSUNY College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations