Hydrogeology Journal

, Volume 16, Issue 2, pp 263–280 | Cite as

Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA

  • Andrew J. Long
  • J. Foster Sawyer
  • Larry D. Putnam


Environmental tracers sampled from the carbonate Madison aquifer on the eastern flank of the Black Hills, South Dakota, USA indicated the approximate locations of four major karst conduits. Contamination issues are a major concern because these conduits are characterized by direct connections to sinking streams, high groundwater velocities, and proximity to public water supplies. Objectives of the study were to estimate approximate conduit locations and assess possible anthropogenic influences associated with conduits. Anomalies of young groundwater based on chlorofluorocarbons (CFCs), tritium, and electrical conductivity (EC) indicated fast moving, focused flow and thus the likely presence of conduits. δ18O was useful for determining sources of recharge for each conduit, and nitrate was a useful tracer for assessing flow paths for anthropogenic influences. Two of the four conduits terminate at or near a large spring complex. CFC apparent ages ranged from 15 years near conduits to >50 years in other areas. Nitrate-N concentrations >0.4 mg/L in groundwater were associated with each of the four conduits compared with concentrations ranging from <0.1 to 0.4 mg/L in other areas. These higher nitrate-N concentrations probably do not result from sinking streams but rather from other areas of infiltration.


Karst USA Groundwater tracers Stable isotopes Groundwater/surface-water relations 


Les traceurs environnementaux échantillonnés à partir de l’aquifère carbonaté de Madison, sur le flanc est des Black Hills dans le Sud du Dakota aux USA, renseignent sur la localisation approximative de quatre conduits karstiques majeurs. Les problèmes de contamination sont importants du fait que ces conduits sont caractérisées par des connections directes avec les pertes des cours d’eau, des vitesses d’écoulement des eaux souterraines élevées et une proximité aux réseaux publiques d’eau potable. Les objectifs de cette étude ont été d’estimer les localisations approximatives des conduits et d’évaluer les influences anthropogéniques associées avec ces conduits. Les anomalies en chlorofluorocarbones (CFCs) des eaux souterraines jeunes, et la conductivité électrique (EC) ont indiqué des mouvements rapides, des écoulements concentrés et donc la présence probable de conduits. δ18O a été utile pour déterminer les sources de recharge de chaque conduit, et le nitrate a été un traceur utile pour évaluer les influences anthropogéniques que l’on retrouve dans les écoulements. Deux des quatre conduits aboutissent à ou près d’importants systèmes de sources. Les âges CFC apparents sont de 15 ans près des conduits et excèdent 50 ans dans d’autres zones. Les concentrations en nitrate-N excèdent 0.4 mg/L où les eaux souterraines sont associées aux conduits, comparé à moins de 0.1 à 0.4 mg/L dans d’autres zones. Ces concentrations élevées en nitrate-N ne sont probablement pas le résultat de pertes de cours d’eau mais plutôt celui de l’infiltration dans d’autres zones.


Las muestras de trazadores ambientales provenientes del acuífero carbonatado Madison en el flanco oriental de las Colinas Negras, Dakota del Sur, Estados Unidos, indican la localización aproximada de cuatro conductos kársticos principales. Los problemas de contaminación son una preocupación principal debido a que estos conductos se caracterizan por conexiones directas con arroyos hundidos, altas velocidades de agua subterránea, y proximidad a fuentes de abastecimiento de agua públicas. Los objetivos del estudio fueron estimar aproximadamente las localizaciones de los conductos y evaluar posibles influencias antropogénicas asociadas con conductos. Las anomalías de agua subterránea joven basadas en clorofluorocarbono (CFCs), tritio, y conductividad eléctrica (CE) indican movimiento rápido, flujo concentrado, y de este modo la presencia probable de conductos. El contenido de δ18O fue útil para determinar fuentes de recarga para cada conducto, y el nitrato fue un trazador útil para evaluar trayectorias de flujo por influencias antropogénicas. Dos de los cuatro conductos terminan en, o cerca de, un complejo grande de manantiales. Las edades aparentes de CFC varían de 15 años cerca de los conductos a >50 años en otras áreas. Las concentraciones de nitrógeno-N >0.4 mg/L en agua subterránea se asociaron con cada uno de los 4 conductos comparado con concentraciones que varían de <0.1 a 0.4 mg/L en otras áreas. Estas concentraciones más altas de nitrógeno-N probablemente no resultan de arroyos hundidos sino de otras áreas de infiltración.



This study was conducted by the US Geological Survey and the South Dakota Geological Survey in cooperation with the West Dakota Water Development District, the US Environmental Protection Agency, and the city of Rapid City. The authors thank the numerous public water supplies and private well owners who granted access and provided assistance with sampling efforts. Brian Katz and two anonymous reviewers provided helpful comments that greatly improved the clarity and scientific objectivity of this report.


  1. Anderson MT, Driscoll DG, Williamson JE (1999) Ground-water and surface-water interactions along Rapid Creek near Rapid City, South Dakota. US Geol Surv Water Resour Invest Rep 98–4214:99Google Scholar
  2. Andre BJ, Rajaram H (2005) Dissolution of limestone fractures by cooling waters: early development by hypogene karst systems. Water Resour Res 41:W01015. DOI  10:1029/2004WR003331
  3. Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Rubin M (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geol Soc Am Bull 94:1415–1429CrossRefGoogle Scholar
  4. Bauer S, Liedl R, Sauter M (2005) Modeling the influence of epikarst evolution on karst aquifer genesis: a time-variant recharge boundary condition for joint karst-epikarst development. Water Resour Res 41, W09416. DOI  10.1029/2004WR003321
  5. Brobst DA, Epstein JB (1963) Geology of the Fanny Peak Quadrangle, Wyoming-South Dakota. US Geol Surv Bull 1063(1):323–377Google Scholar
  6. Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2283CrossRefGoogle Scholar
  7. Busenberg E, Plummer LN (2006) CFC-2005-2a: USGS spreadsheet program for preliminary evaluation of CFC data. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, ViennaGoogle Scholar
  8. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FLGoogle Scholar
  9. Clemens T, Hueckinghaus D, Sauter M, Liedl R, Teutsch G (1997) Modelling the genesis of karst aquifer systems using a coupled reactive network model. In: Pointet T (ed) Hard rock hydrosystems. IAHS publ. no. 241, IAHS, Wallingford, UK, pp 3–10Google Scholar
  10. Cook PG, Solomon DK (1997) Recent advances in dating young groundwater: chlorofluorocarbons, 3H/3He, and 85Kr. J Hydrol 191:245–265CrossRefGoogle Scholar
  11. Cook PG, Solomon D, Sanford WE, Busenberg E, Plummer LN, Poreda R (1996) Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers. Water Resour Res 32:1501–1509CrossRefGoogle Scholar
  12. Coplen TB, Wildman JD, Chen J (1991) Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Anal Chem 63(9):910–912CrossRefGoogle Scholar
  13. Driscoll DG, Hamade GR, Kenner SJ (2000) Summary of precipitation data for the Black Hills area of South Dakota, water years 1931–98. US Geol Surv Open-File Rep 00–0329, 151 ppGoogle Scholar
  14. Driscoll DG, Carter JM, Williamson JE, Putnam LD (2002) Hydrology of the Black Hills area, South Dakota. US Geol Surv Water Resour Invest Rep 02–4094, 150 ppGoogle Scholar
  15. EPA (2002) Onsite wastewater treatment systems manual. EPA/625/R-00/008, US Environmental Protection Agency, Washington, DC, 308 ppGoogle Scholar
  16. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224CrossRefGoogle Scholar
  17. Fishman MJ (ed) (1993) Methods of analysis by the US Geol Survey National Water Quality Laboratory: determination of inorganic and organic constituents in water and fluvial sediments. US Geol Surv Open-File Rep 94-351, 217 ppGoogle Scholar
  18. Ford DC, Lundberg J, Palmer AN, Palmer MV, Dreybrodt W, Schwarcz HP (1993) Uranium-series dating of the draining of an aquifer: the example of Wind Cave, Black Hills, South Dakota. Geol Soc Am Bull 105:241–250CrossRefGoogle Scholar
  19. Gabrovsek F, Dreybrodt W (2000) Role of mixing corrosion in calcite-aggressive H2O–CO2–CaCO3 solutions in the early evolution of karst aquifers in limestone. Water Resour Res 36:1179–1188CrossRefGoogle Scholar
  20. Greene EA (1993) Hydraulic properties if the Madison aquifer system in the western Rapid City area, South Dakota. US Geol Surv Water Resour Invest Rep 93–4008, 56 ppGoogle Scholar
  21. Greene EA (1997) Tracing recharge from sinking streams over spatial dimensions of kilometers in a karst aquifer. Groundwater 35:898–904Google Scholar
  22. Greene EA (1999) Characterizing recharge to wells in carbonate aquifers using environmental and artificially recharged tracers. Proceedings of the Toxic Substances Hydrology Program, Charleston, SC, USA, 8–12 March 1999. US Geol Surv Water Resour Invest Rep 99–4018-C, pp 803–808Google Scholar
  23. Greene EA, Rahn PH (1995) Localized anisotropic transmissivity in a karst aquifer. Groundwater 33:806–816Google Scholar
  24. Greene EA, Shapiro AM, Carter JM (1998) Hydrologic characterization of the Minnelusa and Madison aquifers near Spearfish, South Dakota. US Geol Surv Water Resour Invest Rep 98–4156, p 64Google Scholar
  25. Halihan T, Mace RE, Sharp JM Jr (2000) Flow in the San Antonio segment of the Edwards aquifer: matrix, fractures, or conduits? In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, the Netherlands, pp 129–146Google Scholar
  26. Hayes TS (1999) Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota. US Geol Surv Water Resour Invest Rep 99–4168, 34 ppGoogle Scholar
  27. Helsel DR, Hirsch RM (1992) Statistical methods in water resources: studies in environmental science, vol 49. Elsevier, New York,522 ppGoogle Scholar
  28. Hortness JE, Driscoll DG (1998) Streamflow losses in the Black Hills of western South Dakota. US Geol Surv Water Resour Invest Rep 98–4116, 99 ppGoogle Scholar
  29. Howard AD, Groves CG (1995) Early development of karst systems: 2. turbulent flow. Water Resour Res 31:19–26CrossRefGoogle Scholar
  30. IAEA (2006) Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, 277 ppGoogle Scholar
  31. Katz BG (2004) Sources of nitrate contamination and age of water in large karstic springs of Florida. Env Geol 46:689–706CrossRefGoogle Scholar
  32. Kaufmann G (2003) A model comparison of karst aquifer evolution for different matrix-flow formulations. J Hydrol 283:281–289CrossRefGoogle Scholar
  33. Kaufmann G, Braun J (1999) Karst aquifer evolution in fractured rocks. Water Resour Res 35:3223–3238CrossRefGoogle Scholar
  34. Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36:1381–1391CrossRefGoogle Scholar
  35. Kaufman S, Libby WF (1954) The natural distribution of tritium. Phys Rev 93:1337–1344CrossRefGoogle Scholar
  36. Kolm KE, Peter KD (1984) A possible relation between lineaments and leakage through confining layers in South Dakota: geohydrology of the Dakota aquifer. Proceedings of the First CV Theis conferences on geohydrology, Lincoln, NE, USA, 5–6 Oct 1982Google Scholar
  37. Liedl R, Sauter M, Hueckinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057. DOI  10.1029/2001WR001206 Google Scholar
  38. Lindgren RJ, Dutton AR, Hovorka SD, Worthington SRH, Painter S (2005) Conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas. US Geol Surv Sci Invest Rep 2004–5277, 154 ppGoogle Scholar
  39. Long AJ, Putnam LD (2002) Flow-system analysis of the Madison and Minnelusa aquifers in the Rapid City area, South Dakota-conceptual model. US Geol Surv Water Resour Invest Rep 02–4185, 100 ppGoogle Scholar
  40. Long AJ, Putnam LD (2004) Linear model describing three components of flow in karst aquifers using 18O data. J Hydrol 296:254–270CrossRefGoogle Scholar
  41. Long AJ, Putnam LD (2005) Estimating ground-water age distribution from CFC and tritium data in the Madison aquifer, Black Hills, South Dakota. Proceedings of the Karst Interest Group, Rapid City, SD, USA, 12–15 Sept 2005. US Geol Survey Sci Invest Rep 2005–5160, 115 ppGoogle Scholar
  42. Long AJ, Putnam LD (2006) Translating CFC-based piston ages into probability density functions of ground-water age in karst. J Hydrol 330(3–4):735–747CrossRefGoogle Scholar
  43. Mangin A (1994) Karst hydrogeology. In: Gilbert J (ed) Ground-water ecology. Elsevier, New York, pp 43–67Google Scholar
  44. Meyer MR (1987) A summary of groundwater pollution problems in South Dakota. South Dakota Department of Water and Natural Resources, Pierre, SD, 18 ppGoogle Scholar
  45. Miller SL (2005) Influences of geologic structures and stratigraphy on ground-water flow paths in the karstic Madison aquifer in the Rapid City area, South Dakota. PhD Thesis, South Dakota School of Mines and Technology, Rapid City, SD, 191 ppGoogle Scholar
  46. Naus CA, Driscoll DG, Carter JM (2001) Geochemistry of the Madison and Minnelusa aquifers in the Black Hills area, South Dakota. US Geol Surv Water Resour Invest Rep 01–4129, 118 ppGoogle Scholar
  47. Oster H, Sonntag C, Munnich KO (1996) Groundwater age dating with chlorofluorocarbons. Water Resour Res 32:2989–3001CrossRefGoogle Scholar
  48. Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103:1–21CrossRefGoogle Scholar
  49. Palmer AN, Palmer MV (1995) The Kaskaskia paleokarst of the northern Rocky Mountains and Black Hills, northwestern, USA. Carbon Evapor 10:148–160CrossRefGoogle Scholar
  50. Petrovic AM (1990) The fate and transport of nitrogenous fertilizers applied to turfgrass. J Environ Q 19:1–15CrossRefGoogle Scholar
  51. Plummer LN, Busenberg E (1999) Chlorofluorocarbons. In: Cook PG, Herczeg A (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, the Netherlands, pp 441–478Google Scholar
  52. Plummer LN, Busenberg E, Han LF (2006) CFCs in binary mixtures of young and old groundwater. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 59–72Google Scholar
  53. Putnam LD, Long AJ (2007) Analysis of ground-water flow in the Madison aquifer using fluorescent dyes injected in spring creek and rapid creek near Rapid City, South Dakota, 2003–2004. US Geol Surv Sci Invest Rep (in press)Google Scholar
  54. Rahn PH (1971) The hydrologic significance of the November, 1968 dye test on Boxelder Creek, Black Hills, South Dakota. Proc S Dak Acad Sci 50:52–56Google Scholar
  55. Rahn PH (2006) Nitrate in Rapid City’s water supply. Proc S Dak Acad Sci 85:31–42Google Scholar
  56. Rahn PH, Gries JP (1973) Large springs in the Black Hills, South Dakota and Wyoming. Report of Investigations 107, South Dakota Geol Survey, Vermillion, SD, 100 ppGoogle Scholar
  57. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie JA, Savin S (eds) Climate change in continental isotopic records. Am Geophys Union Monogr 78:1–36Google Scholar
  58. Sawyer JF (2006) Water quality near wastewater treatment systems in alluvial and karst hydrogeologic settings, Black Hills, South Dakota. PhD Thesis, South Dakota School of Mines and Technology, Rapid City, SDGoogle Scholar
  59. SDDENR (South Dakota Department of Environment and Natural Resources) (2006) Total maximum daily load evaluation for Sheridan Lake, Pennington County, South Dakota. South Dakota Department of Environment and Natural Resources, Pierre, SD, 104 ppGoogle Scholar
  60. Strobel ML, Jarrell GJ, Sawyer JF, Schleicher JR, Fahrenbach MD (1999) Distribution of hydrogeologic units in the Black Hills area, South Dakota. US Geol Surv Hydrol Invest Atlas HA-743Google Scholar
  61. Swanson E (2004) Analysis of phosphorus in Spring Creek and Sheridan Lake in the Black Hills of South Dakota. MSc Thesis, South Dakota School of Mines and Technology, Rapid City, SD, 84 ppGoogle Scholar
  62. Szabo Z, Rice DE, Plummer LN, Busenberg E, Drenkard S, Schlosser P (1996) Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain. Water Resour Res 32:1023–1038CrossRefGoogle Scholar
  63. Taylor JR (2003) Evaluating groundwater nitrates from on-lot septic systems: a guidance model for land planning in Pennsylvania. Penn State Great Valley School of Graduate Professional Studies, Malvern, PA, USA, 12 ppGoogle Scholar
  64. Thatcher LL, Janzer VJ, Edwards KW (1977) Methods for determination of radioactive substances in water and fluvial sediments. Techniques of Water-Resources Investigations of the US Geological Survey, Book 5, chap A5, US Geological Survey, Reston, VA, pp 79–81Google Scholar
  65. Tinker JR Jr (1991) An analysis of nitrate-nitrogen in ground water beneath unsewered subdivisions. Ground Water Monit Rev 11:141–150CrossRefGoogle Scholar
  66. US Geological Survey (2006a) National field manual for the collection of water-quality data. US Geological Survey Techniques of Water-Resources Investigations, book 9, chaps A1–A9. http://pubs.water.usgs.gov/twri9A. Cited 15 Nov 2006
  67. US Geological Survey (2006b) The Reston Chlorofluorocarbon Laboratory, US Geological Survey. http://water.usgs.gov/lab/. Cited 15 Nov 2006
  68. US Geological Survey (2006c) Reston Stable Isotope Laboratory, US Geol Survey. http://isotopes.usgs.gov/index.htm. Cited 15 Nov 2006
  69. US Geological Survey (2006d) Water resources data for South Dakota, water years 1975–2006. US Geol Survey Water Data Reports SD-75 to SD-06-1, US Geological Survey, Reston, VAGoogle Scholar
  70. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New York, 464 ppGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrew J. Long
    • 1
  • J. Foster Sawyer
    • 2
  • Larry D. Putnam
    • 1
  1. 1.US Geological SurveyRapid CityUSA
  2. 2.South Dakota Geological SurveyRapid CityUSA

Personalised recommendations