Hydrogeology Journal

, Volume 16, Issue 1, pp 103–121 | Cite as

Characterization of the shallow groundwater system in an alpine watershed: Handcart Gulch, Colorado, USA

  • Katherine Gurley Kahn
  • Shemin Ge
  • Jonathan Saul Caine
  • Andrew Manning
Report

Abstract

Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10−5 m/s. Discharge was estimated at 1.28×10−3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10−5–2.0×10−3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10−9–2.0×10−4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.

Keywords

Groundwater recharge/water budget Numerical modeling Groundwater/surface-water relations Fractured crystalline rocks USA 

Résumé

Les mesures de niveaux piézométriques et des paramètres caractéristiques des aquifères sont rares en contexte alpin, du fait du faible nombre d’ouvrages existants. Les systèmes aquifères alpins peuvent constituer une source primaire de réalimentation des systèmes aquifères régionaux. Handcart Gulch est un bassin versant alpin du Colorado (Etats-Unis), constitué de roches métamorphiques et ignées protérozoïques intensément fracturées, dans lesquelles les puits sont forés à des profondeurs diverses. L’étude considérée vise à déterminer les propriétés hydrologiques de la roche-mère à proximité de la surface et des matériaux superficiels, en développant un bilan en eau sur le bassin versant, et en testant la pertinence des propriétés hydrologiques mesurées et du bilan, par la construction d’un modèle simple qui intègre les eaux souterraines et de surface sur l’année hydrologique 2005. L’eau alimente la zone étudiée par les précipitations, et constitue à la fois un écoulement vers le cours d’eau principal et une réalimentation potentielle pour l’aquifère profond. Les infiltrations de surface sont comprises entre 0.1 et 6.2×10−5 m/s. Le volume sortant est estimé à 1.28×10−3 km3. Une analyse par modélisation numérique des pompages d’essai effectués sur un puits unique a généré des coefficients d’emmagasinement plus faibles dans le socle cristallin que dans les matériaux colluviaux et cuirasses ferrugineuse (6.7×10−5–2.0×10−3 l/m). Les perméabilités dans le socle cristallin sont significativement plus faibles que dans les matériaux colluviaux et alluviaux (4.3×10−9–2.0×10−4 m/s). Le bilan en eau suggère qu’en période normale de précipitations et températures, l’eau est disponible pour la réalimentation du système aquifère profond.

Resumen

Las mediciones de elevaciones del nivel freático y las estimaciones de parámetros de acuíferos son raras en contextos alpinos debido a que existen pocos pozos en estos ámbitos. Los sistemas de agua subterránea alpinos pueden ser una fuente primaria de recarga a sistemas de flujo de agua subterránea regionales. Handcart Gulch es una cuenca alpina en Colorado, Estados Unidos, compuesta de rocas ígneas y metamórficas Proterozoicas altamente fracturadas con pozos completados a varias profundidades. Los objetivos principales del estudio incluyen la determinación de las propiedades hidrológicas del macizo rocoso somero y de materiales superficiales, desarrollando un balance hídrico para la cuenca, y evaluando la consistencia de las propiedades hidrológicas medidas y el balance hídrico, mediante la construcción de un modelo simple que incorpora agua superficial y agua subterránea para el año hídrico 2005. El agua entra al área de estudio en forma de precipitación y sale en forma de descarga en el río principal o mediante recarga potencial del acuífero más profundo. Los ritmos de infiltración superficial varían de 0.1–6.2×10−5 m/s. La descarga se estimó en 1.28×10−3 km3. Los análisis de modelos numéricos de pruebas de acuíferos en un solo pozo pronosticaron almacenamiento específico más bajo en el macizo rocoso cristalino que en ferricreto y material coluvial (6.7×10−5–2.0×10−3 l/m). La conductividad hidráulica en el macizo rocoso cristalino fue significativamente más baja que en el material aluvial y coluvial (4.3×10−9 a 2.0×10−4 m/s). Los resultados del balance hídrico sugieren que durante temperatura y precipitación normal el agua está disponible para recargar el sistema de flujo de agua subterránea más profundo.

References

  1. Acworth RI (1987) The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol London 20:265–272CrossRefGoogle Scholar
  2. Anderson MP, Woessner WW (1992) Applied groundwater modeling, simulation of flow and advective transport. Academic, San Diego, CA, 381 ppGoogle Scholar
  3. Birch F (1950) Flow of heat in the Front Range, Colorado. Geol Soc Am Bull 61:567–630CrossRefGoogle Scholar
  4. Brutsaert W (1982) Evaporation into the atmosphere: theory, history, and applications. Reidel, Higham, MA, 229 ppGoogle Scholar
  5. Caine JS, Tomusiak SRA (2003) Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifier system in the Colorado Rocky Mountain Front Range: Geological Society of America Bulletin, v. 115, pp. 1410–1424CrossRefGoogle Scholar
  6. Caine JS, Bove DJ, Manning AH, Verplanck PL (2004) Preliminary characterization of geological controls on groundwater flow and solute transport in an alpine hydrothermal metal deposit: Handcart Gulch, Montezuma Mining District, Colorado Rocky Mountain Front Range. GSA Abstr Progr 36(5):539Google Scholar
  7. Caine JS, Manning AH, Verplanck PL, Bove DJ, Kahn KG, Ge S (2006) Well Construction information, lithologic logs, water level data, and overview of research in the Handcart Gulch, Colorado: an alpine watershed affected by metalliferous hydrothermal alteration. US Geol Surv Open-File Rep 2006-1189, 14 ppGoogle Scholar
  8. Dewandel B, Lachassagne P, Wyns R et al (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284CrossRefGoogle Scholar
  9. Flerchinger GN, Cooley KR, Ralston DR (1992) Groundwater response to snowmelt in a mountainous watershed. J Hydrol 133:293–311CrossRefGoogle Scholar
  10. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ, 604 ppGoogle Scholar
  11. Harrison JE, Moench RH (1961) Joints in Precambrian rocks, Central City-Idaho Springs area, Colorado. US Geol Surv Prof Pap PP 374-B, pp B1–B14Google Scholar
  12. Hely AG, Mower RW, Harr CA (1971) Water resources of Salt Lake County, Utah, Utah Department of Natural Resources Technical Publication No. 31, Utah Department of Natural Resources, Salt Lake City, UTGoogle Scholar
  13. Jackwhacker Gulch SNOTEL, Colorado (2004–2005) http://www.wcc.nrcs.usda.gov/snotel/. Cited 1 October 2005
  14. Jones MJ (1985) The weathered zone aquifers of the basement complex areas of Africa. Q J Eng London 18:35–46Google Scholar
  15. Kahn KG (2005) Analysis of the shallow groundwater system in an alpine basin: Handcart Gulch, Colorado. PhD Thesis, University of Colorado, USA, 148 ppGoogle Scholar
  16. Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852CrossRefGoogle Scholar
  17. Lovering TS (1935) Geology and ore deposits of the Montezuma Quadrangle, Colorado. U S Geol Surv Prof Pap 178:119Google Scholar
  18. Lovering TS, Goddard EN (1950) Geology and ore deposits of the Front Range, Colorado. Geol Surv Prof Pap 223:319Google Scholar
  19. Lui F, Williams MW, Caine N (2004) Source waters and flow paths in an alpine catchment, Colorado Front Range, United States. Water Resour Res 40:W09401. DOI 10.1029/2004WR003076
  20. Manning AH, Caine JS (2007) Groundwater noble gas, age, and temperature signatures in an Alpine watershed: valuable tools in conceptual model development. Water Resour Res 43:W04404. DOI 10.1029/2006WR005349
  21. Manning AH, Caine JS, Verplanck PL, Bove DJ, Landis GP (2004) Insights into groundwater flow in an alpine watershed provided by a coupled head, mass, and fluid transport model, Handcart Gulch, Colorado. GSA Abstr Progr 36(5):539Google Scholar
  22. Niwot Ridge Long-Term Ecological Research Site (LTERS) (2005) http://culter.colorado.edu/NWT/site_info/climate/climate.html. Cited 7 November 2005
  23. Perse JD (2000) Geology and significance of a large ferricrete deposit in Handcart Gulch, Park County, Colorado. PhD Thesis, Ohio State University, USA, 88 ppGoogle Scholar
  24. Pride DE, Robinson CS (2001) Geochemical evidence of sulfide mineralization at Webster Pass, Summit and Park Counties, Colorado. GSA Abstracts with Programs, Volume 33, No. 4, p 46Google Scholar
  25. Rantz SE et al (1982) Measurement and computation of streamflow, vol 1: measurement of stage and discharge. US Geol Surv Water Suppl Pap 2175:284Google Scholar
  26. Snow DT (1973) Mountain groundwater supplies. Mountain Geol 10(1):19–24Google Scholar
  27. Tweto O (1980) Summary of laramide orogeny in Colorado. In: Denver CO, Kent HC, Porter KW (eds) Symposium on Colorado geology. Rocky Mountain Association of Geologists, Denver, CO, pp 129–134Google Scholar
  28. Verplanck PL, Nordstrom DK, Manning AH, Caine JS, Plumlee GS, Hunt AG, Bove DJ (2004) Linking geochemical and hydrologic models of ground water in two Rocky Mountain catchments: Straight Creek, NM and Handcart Gulch, CO. GSA Abstr Progr 36(5):539Google Scholar
  29. Verplanck PL, Yager DB, Church SE, Stanton MR (2006) Ferricrete classification, morphology, distribution, and 14C age constraints. In: Church SE, von Guerard P, Finger SE (eds) Integrated investigations of environmental effects of historical mining in the Animas River watershed, San Juan County, Colorado US Geol Surv Prof Pap 1651, pp 721–744Google Scholar
  30. Wahlstrom EE, Kim OJ (1959) Precambrian rocks of the Hall Valley Area, Front Range, Colorado. Bull Geol Soc Am 70:1217–1244CrossRefGoogle Scholar
  31. Waterloo Hydrogeologic Inc (2005) Visual MODFLOW v.4.1 user’s manual. Waterloo, Ontario, Canada, 613 ppGoogle Scholar
  32. Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR sounding for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Géol Fr 175(1):21–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Katherine Gurley Kahn
    • 1
  • Shemin Ge
    • 2
  • Jonathan Saul Caine
    • 3
  • Andrew Manning
    • 3
  1. 1.Cameron-Cole, LLCBoulderUSA
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.US Geological SurveyDenverUSA

Personalised recommendations