Hydrogeology Journal

, 16:31 | Cite as

Identification of a hydrodynamic threshold in karst rocks from the Biscayne Aquifer, south Florida, USA

  • Vincent J. DiFrenna
  • René M. Price
  • M. Reza Savabi
Article

Abstract

A hydrodynamic threshold between Darcian and non-Darcian flow conditions was found to occur in cubes of Key Largo Limestone from Florida, USA (one cube measuring 0.2 m on each side, the other 0.3 m) at an effective porosity of 33% and a hydraulic conductivity of 10 m/day. Below these values, flow was laminar and could be described as Darcian. Above these values, hydraulic conductivity increased greatly and flow was non-laminar. Reynolds numbers (Re) for these experiments ranged from <0.1 to 7. Non-laminar flow conditions observed in the hydraulic conductivity tests were observed at Re close to 1. Hydraulic conductivity was measured on all three axes in a permeameter designed specifically for samples of these sizes. Positive identification of vertical and horizontal axes as well as 100% recovery for each sample was achieved. Total porosity was determined by a drying and weighing method, while effective porosity was determined by a submersion method. Bulk density, total porosity and effective porosity of the Key Largo Limestone cubes averaged 1.5 g/cm3, 40 and 30%, respectively. Two regions of anisotropy were observed, one close to the ground surface, where vertical flow dominated, and the other associated with a dense-laminar layer, below which horizontal flow dominated.

Keywords

Karst Hydraulic properties Porosity Reynolds number USA 

Résumé

Un seuil hydrodynamique entre des conditions d’écoulements darciens et non-darciens a été observée dans des blocs de calcaire de Key Largo en Floride, USA (un cube mesurant 0.2 m sur chacun de ses côtés, l’autre 0.3 m), pour une porosité effective de 33% et une conductivité hydraulique de 10 m/jour. Au dessous de ces valeurs, l’écoulement est laminaire et peut être décrit comme darcien. Au dessus de ces valeurs, la conductivité hydraulique augmente rapidement et l’écoulement est non-laminaire. Les nombres de Reynolds (Re) pour ces expériences sont compris entre <0.1 et 7. Les conditions d’écoulement non-laminaire lors des tests de conductivité hydraulique ont été observées à des Re proche de 1. La conductivité hydraulique a été mesurée selon les trois axes dans un perméamètre construit spécialement pour des échantillons de ces tailles. L’identification positive des axes verticaux et horizontaux ainsi qu’une restitution de 100 pourcent pour chaque échantillon ont été atteints. La porosité totale a été déterminée suivant une méthode d’assèchement et peusage, tandis que la porosité effective a été déterminée par une méthode de submersion. Les valeurs moyennes de la densité apparente, la porosité totale et la porosité effective des blocs de calcaire de Key Largo sont respectivement de 1.5 g/cm3, 40 et 30%. Deux régions d’anisotropie ont été observées, une proche de la surface du sol où les écoulements verticaux dominent, et une seconde associée avec une couche laminaire dense, sous laquelle l’écoulement horizontal domine.

Resumen

Fue encontrado que hay un umbral hidrodinámico entre las condiciones de flujo Darciano y non-Darciano en cubos de la Caliza de Key Largo de Florida, EE.UU. (uno de los cubos midiendo 0.2 m en cada lado, los otros 0.3 m), con una porosidad eficaz de 33% y una conductividad hidráulica de 10 m/día. Por debajo de estos valores, el flujo fue laminar y podría describirse como Darciano. Por encima de estos valores, la conductividad hidráulica aumentó en gran medida y el flujo fue no-laminar. Los números de Reynolds (Re) para estos experimentos oscilaron de <0.1 a 7. Se observaron condiciones de flujo no-laminar en las pruebas de conductividad hidráulica con valores de Re cercanos de 1. La conductividad hidráulica se midió en todos los tres ejes, con un permeámetro diseñado específicamente para muestras de estos tamaños. Fue lograda la identificación positiva de los ejes verticales y horizontales así como una recuperación del 100 por ciento para cada muestra. La porosidad total se determinó por el método de secado y pesado, mientras la porosidad eficaz fue determinada por el método del sumergimiento. La densidad a granel, porosidad total y porosidad eficaz de los cubos de la Caliza de Key Largo promediaron 1.5 g/cm3, 40 y 30%, respectivamente. Se observaron dos regiones de anisotropía, una cerca de la superficie del terreno dónde el flujo vertical dominó, y la otra asociada con una capa laminar densa, por debajo de la cual el flujo horizontal dominó.

References

  1. Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic Press, San Diego, CA, USAGoogle Scholar
  2. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  3. Cunningham KJ, Renken RA Wacker MA, Zygnerski MR, Robinson E, Shapiro AM, Wingard GL (2006) Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404:191–208Google Scholar
  4. Dillon K, Corbett RD, Chanton JP, Burnett W, Furbish DJ (1999) The use of sulfur hexafluoride (SF6) as a tracer of septic tank effluent in the Florida Keys. J Hydrol 220:129–140CrossRefGoogle Scholar
  5. Dillon K, Burnett WC, Kim G, Chanton JP, Corbett DR, Elliott K, Kump L (2003) Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in the Florida Keys. J Hydrol 284:193–210CrossRefGoogle Scholar
  6. Ewers RO (2006) Karst aquifers and the role of assumptions and authority in science. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soci Am Spec Pap 404:235–242Google Scholar
  7. Fetter CWJ (2001) Applied hydrogeology. Prentice-Hall, NJ, USAGoogle Scholar
  8. Ford D, Williams P (1989) Karst geomorphology and hydrology. Hyman, LondonGoogle Scholar
  9. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, NJ, USAGoogle Scholar
  10. Halley RB, Vacher HL, Shinn EA (1997) Geology and hydrogeology of the Florida Keys. In: Vacher HL, Quinn HL (eds) Geology and hydrogeology of carbonate islands: developments in Sedimentology, vol 54. Elsevier, Amsterdam, pp 217–248Google Scholar
  11. Hoffmeister JE, Multer HG (1968) Geology and origin of the Florida Keys. Geol Soc Am Bull 79:1487–1502CrossRefGoogle Scholar
  12. Jeannin PY (2001) Modeling flow in phreatic and epiphreatic karst conduits in the Hölloch cave (Muotatal, Switzerland). Water Resour Res 37:191–200CrossRefGoogle Scholar
  13. Kiraly L (1975) Rapport sur l’état actuel des connaissances dans le domaine des caractères physiques des roches karstiques [Report on the current state of knowledge in the field of the physical characteristics of karst rocks]. In: Burger A, Dubertert L (eds) Hydrogeology of karstic terrains. International Contributions to Hydrogeology, Series 8, International Association of Hydrogeologists, Kenilworth, UK, pp 53–67Google Scholar
  14. Kiraly L (2003) Karstification and groundwater flow: speleogenesis and evolution of karst aquifers In: Gabrovšek F (ed) (2002) Evolution of karst: from prekarst to cessation. Postojna-Ljubljana, Zalozba, Slovenia, pp 155–190. http://www.speleogenesis.info/archive/publication.php?PubID=3244. Cited 7/13/07
  15. Langevin CD, Stewart MT, Beaudoin CM (1998) Effects of sea water canals on fresh water resources: an example from Big Pine Key, Florida. Ground Water 36:503–513CrossRefGoogle Scholar
  16. Małoszewski P, Stichler W, Zuber A, Rank D (2002) Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modeling of environmental 18O and 3H isotopes. J Hydrol 256:48–59CrossRefGoogle Scholar
  17. Manda AK, Gross MR (2006) Estimating aquifer-scale porosity and the REV for karst limestones using GIA-based spatial analysis. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404:177–189Google Scholar
  18. Moreno L, Tsang C-F (1994) Flow channeling in strongly heterogeneous porous media: a numerical study. Water Resour Res 30:1421–1430CrossRefGoogle Scholar
  19. Motyka J (1998a) A conceptual model of hydraulic networks in carbonate rocks, illustrated by examples from Poland. Hydrogeol J 6:469–482CrossRefGoogle Scholar
  20. Motyka J, Pulido-Bosch A, Borczak S, Gisbert J (1998b) Matrix hydrogeological properties of Devonian carbonate rocks of Olkusz (southern Poland). J Hydrol 211:140–150CrossRefGoogle Scholar
  21. Parker GG, Gerguson GE, Love SK, and others (1955) Water resources of southeastern Florida with special reference to geology and groundwater of the Miami areas. US Geol Surv Water Suppl Pap 1255Google Scholar
  22. Paul JH, Mclauglin MR, Griffin DW, Lipp EK, Stoke R, Rose J (2000) Rapid movement of wastewater from on-site disposal system into surface waters in the lower Florida Keys. Estuaries 23:662–668CrossRefGoogle Scholar
  23. Pulido-Bosch A, Motyka J, Pulido-Lebeuf P, Borczak S (2004) Matrix hydrodynamic properties of carbonate rocks from the Betic Cordillera (Spain). Hydrol Process 18:2893–2906CrossRefGoogle Scholar
  24. Randazzo AF, Halley RB (1997) The geology of the Florida Keys region. In: Randazzo AF, Jones DF (eds) The geology of Florida. University of Florida Press, Gainseville, FL, USA, pp 251–259Google Scholar
  25. Rovey CWI (1994) Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity. Environ Geol 24:244–253CrossRefGoogle Scholar
  26. Rovey CWI, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33:769–780CrossRefGoogle Scholar
  27. Schad H, Teutsch G (1994) Effects of the investigation scale on pumping test results in heterogeneous porous aquifers. J Hydrol 159:61–77CrossRefGoogle Scholar
  28. Schmoker JW, Halley RB (1982) Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bull 66:2561–2570Google Scholar
  29. Schulze-Makuch D, Cherkauer DS (1998) Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks. Hydrogeol J 6:204–215CrossRefGoogle Scholar
  30. Shah CB, Yortsos YC (1996) The permeability of strongly disordered systems. Phys Fluids 8:208–282CrossRefGoogle Scholar
  31. Shinn EA, Reese RS, Reich CD (1994) Fate and pathways of injection-well effluent in the Florida Keys. US Geol Surv Open-File Rep 94-276Google Scholar
  32. Shuster ET, White WB (1971) Seasonal fluctuation in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128CrossRefGoogle Scholar
  33. Vacher HL, Wrightman MJ, Stewart MT (1992) Hydrology of meteoric diagenesis, effect of Pleistocene stratigraphy on freshwater lenses of Big Pine Key, Florida. In: Fletcher CWI, Wehmiller JF (eds) Quarternary coasts of the United States, marine and lacustrine systems. SEPM, Tulsa, OK, USA, pp 213–219Google Scholar
  34. Whitaker FF, Smart PL (2000) Characterizing scale-dependence of hydraulic conductivity in carbonates: evidence from the Bahamas. J Geochem Explor 69–70:133–137CrossRefGoogle Scholar
  35. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  36. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105CrossRefGoogle Scholar
  37. White WB (2006) Fifty years of karst hydrology and hydrogeology: 1953–2003. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology, and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404:139–152Google Scholar
  38. Wightman MJ (1990) Geophysical analysis and Dupuit-Ghyben-Herzberg modeling of freshwater lenses on Big Pine Key, Florida. MSc Thesis, University of South Florida, Tampa, FL, USAGoogle Scholar
  39. Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky IK, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. Balkema, Rotterdam, pp 113–128Google Scholar
  40. Zuber A, Motyka J (1994) Matrix porosity as the most important parameter of fissured rocks for solute transport at large scale. J Hydrol 158:19–46CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Vincent J. DiFrenna
    • 1
  • René M. Price
    • 2
  • M. Reza Savabi
    • 3
  1. 1.Department of Earth SciencesFlorida International UniversityMiamiUSA
  2. 2.Department of Earth Sciences and SERCFlorida International UniversityMiamiUSA
  3. 3.Agricultural Research ServiceUS Department of AgricultureMiamiUSA

Personalised recommendations