Advertisement

Hydrogeology Journal

, 15:1615 | Cite as

Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium

  • Jordi Batlle Aguilar
  • Philippe Orban
  • Alain Dassargues
  • Serge BrouyèreEmail author
Report

Abstract

The European Union (EU) has adopted directives requiring that Member States take measures to reach a “good” chemical status of water resources by the year 2015 (Water Framework Directive: WFD). In order to achieve the environmental objectives for groundwater, the identification and reversal of significant upward trends in pollutant concentrations are required. A very detailed dataset available for the Hesbaye chalk aquifer in Belgium is used to evaluate tools and to propose efficient methodologies for identifying and quantifying nitrate trends in groundwater. Results indicate that the parametric linear regression and the non-parametric Mann-Kendall tests are robust; however, the latter test seems more adequate as it does not require verification of the normality of the dataset and it provides calculated nitrate trends very comparable to those obtained using linear regression. From a hydrogeological point of view, results highlight a general upward trend in the whole groundwater basin. The extrapolation of the trend analysis results indicates that measures have to be taken urgently in order to avoid further major degradation of groundwater quality within the next 10–70 years. However, a good groundwater quality status cannot be expected in the Hesbaye aquifer for the 2015 EU WFD deadline.

Keywords

Groundwater monitoring Nitrate Trend analysis Belgium Water Framework Directive 

Résumé

L’union européenne (EU) a adopté une directive imposant aux états membres d’atteindre le “bon” état chimique des ressources en eaux pour l’année 2015 (Directive cadre sur l’eau- DCE, 2000). Pour réaliser ces objectifs environnementaux pour les eaux souterraines, il est nécessaire d’identifier et inverser les tendances des concentrations en contaminants significativement à la hausse. Un jeu de données très détaillé, disponible pour la nappe aquifère de Hesbaye, un aquifère crayeux en Belgique, est utilisé pour évaluer des outils et proposer des méthodologies efficaces d’identification et de quantification des tendances en nitrates dans les eaux souterraines sur base d’une procédure statistique en trois étapes. Les résultats indiquent que la régression linéaire paramétrique et le test non paramétrique de Mann-Kendall sont robustes; cependant, ce dernier test semble plus adéquat car il ne requiert pas de vérifier la normalité du jeu de données et il produit des tendances en nitrates calculées très proches de celles obtenues avec la régression linéaire. Du point de vue hydrogéologique, les résultats montrent une tendance générale à la hausse dans l’ensemble du bassin hydrogéologique. L’extrapolation des résultats de l’analyse de tendance montre que des mesures doivent être prise sans tarder pour éviter une dégradation majeure des eaux souterraines dans les 10 à 70 prochaines années. Cependant, un bon état chimique des eaux souterraines ne peut déjà plus être attendu pour la date limite de 2015 prévue dans la DCE.

Resumen

La Unión Europea ha adoptado directivas que instan a todos los Estados Miembros a tomar mesuras con el fin de alcanzar un “buen estado” químico de los recursos hídricos en vistas al año 2015 (Directiva 2000/60/CE -WFD). Con el fin de alcanzar los objetivos medioambientales relativos a las aguas subterráneas, son necesarias la identificación e inversión de las tendencias a la alza de las concentraciones de contaminantes. Detalladas series temporales correspondientes al calcáreo acuífero de de Hesbaye, en Bélgica, son el centro del presente estudio, con el fin de evaluar los métodos existentes y proponer pautas metodológicas eficientes para la identificación y cuantificación de las tendencias en las concentraciones de nitratos en las aguas subterráneas, usando un procedimiento estadístico basado en tres pasos básicos. Los resultados obtenidos instan a concluir que tanto el procedimiento paramétrico y no paramétrico, regresión lineal y el test de Mann-Kendall respectivamente, son suficientemente robustos; sin embargo, éste último se muestra más adecuado por el mero hecho que no necesita una previa verificación de la normalidad de la serie de datos, obteniendo valores de tendencias totalmente comparables y a acorde con aquellos obtenidos mediante la regresión lineal. Desde un punto de vista hidrogeológico, los resultados demuestran una generalizada tendencia a la alza de la concentración en nitratos de las aguas subterráneas del acuífero estudiado. Asimismo, una extrapolación de los resultados de tendencias obtenidos indica que toda una serie de mesuras necesitan ser tomadas urgentemente con el fin de evitar una mayor degradación de la calidad química de las aguas subterráneas para los futuros 10–70 años. Paradójicamente, un “buen estado” químico de las aguas subterráneas es difícilmente imaginable para el año 2015, fecha límite propuesta por la Directiva WFD.

Notes

Acknowledgements

This work was supported by the European Union FP6 Integrated Project AquaTerra (Project no. 505428) under the thematic priority, Sustainable Development, Global Change and Ecosystems; and by the Walloon Region DGRNE (Direction Générale des Resources Naturelles et Environment de la Région wallonne). The authors gratefully acknowledge F. Delloye from the DGRNE and J. van der Sluys from the VMW (Vlaamse Maatschappij voor Watervoorziening, Flemish region, Belgium) for their support in data acquisition and the two anonymous reviewers whose comments helped to clarify the manuscript significantly.

References

  1. AquaTerra (2004) Integrated modelling of the river-sediment-soil-groundwater system: advanced tools for the management of catchment areas and river basins in the context of global change. Integrated Project of the 6th EU RTD Framework Programme Project no. 505428. AquaTerra. http://www.eu-aquaterra.de/. Cited 23 June 2007
  2. Aravena R, Robertson WD (1998) Use of multiple isotope tracers to evaluate denitrification in ground water: study of nitrate from a large-flux septic system plume. Ground Water 36(6):975–982CrossRefGoogle Scholar
  3. Aravena R, Evans MLE, Cherry JA (1993) Stable isotope of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31(2):180–186CrossRefGoogle Scholar
  4. Biver P (1993) Etude phénoménologique et numérique de la propagation des polluants miscibles dans un milieu à porosité multiple [Phenomenological and numerical study of miscible contaminant propagation in a multi-porosity medium]. PhD Thesis, University of Liège. Belgium, 389 ppGoogle Scholar
  5. Bonett DG, Seier E (2002) A test of normality with high uniform power. Comput Stat Data Anal 40:435–445CrossRefGoogle Scholar
  6. Bouman BAM, Castañeda AR, Bhuiyan SI (2002) Nitrate and pesticide contamination of ground water under rice-based cropping systems: past and current evidence from the Philippines. Agric Ecosyst Environ 92:185–199CrossRefGoogle Scholar
  7. Broers HP (2004) The spatial distribution of ground water age for different geohydrological situations in the Netherlands: implications for groundwater quality monitoring at the regional scale. J Hydrol 299:84–106CrossRefGoogle Scholar
  8. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in ground water quality. J Hydrol 296:192–220CrossRefGoogle Scholar
  9. Broers HP, Visser A, Dubus IG, Baran N, Morvan X, Normand M, Gutiérrez A, Mouvet C, Batlle Aguilar C, Brouyère S, Orban P, Dautrebande S, Sohier C, Korcz M, Bronder J, Dlugosz J, Odrzywolek M (2005) Report with documentation of reconstructed land use around test sites. Deliverable T2.2, Integrated Project FP6 no. 505428, AquaTerra , Tübingen, Germany, 64 ppGoogle Scholar
  10. Brouyère S (2001) Etude et modélisation du transport et du piégeage des solutés en milieu souterrain variablement saturé [Study and modelling of transport and retardation of solutes in variably saturated media]. PhD Thesis. Faculté des Sciences Appliquées. Laboratoire de géologie de l’ingénieur, d’Hydrogéologie et de Prospection géophysique. Université de Liège, Liège, Belgium, 640 ppGoogle Scholar
  11. Brouyère S, Carabin G, Dassargues A (2004a) Climate change impacts on ground water resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol J 12:123–134CrossRefGoogle Scholar
  12. Brouyère S, Dassargues A, Hallet V (2004b) Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. J Cont Hydrol 72:135–164CrossRefGoogle Scholar
  13. Carr JR (1995) Numerical analysis for the geological sciences. Penitence-Hall, Englewood Cliffs, NJ, 592 ppGoogle Scholar
  14. Conover WL (1980) Practical nonparametric statistics. Wiley, New York, 493 ppGoogle Scholar
  15. Cook PG, Love AJ, Robinson NI, Simmons CT (2005) Ground water ages in fractured rock aquifers. J Hydrol 308:284–301CrossRefGoogle Scholar
  16. D’Agostino RB (1970a) Geary’s test revisited. Psychol Bull 74:138–140CrossRefGoogle Scholar
  17. D’Agostino RB (1970b) Transformation to normality of the null distribution of g1. Biometrika 57:679–681Google Scholar
  18. Dassargues A, Monjoie A (1993) The chalk in Belgium. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the chalk of north-west Europe, chap 8. Clarendon, Oxford, UK, pp 153–269Google Scholar
  19. Dautrebande S, Sohier C (2004) Projet de recherche PIRENE: Rapport final [PIRENE research project: final report]. University of Gembloux, France, 120 ppGoogle Scholar
  20. Downing RA, Price M, Jones GP (1993) The hydrogeology of the chalk of north-west Europe. Clarendon, Oxford, UK, 300 ppGoogle Scholar
  21. EU (1991) Council Directive of 12 Decembeer 1991 concerning the protection of waters against pollution caused nitrates from agricultural sources (91/676/EEC), EU, Brussels, 13 ppGoogle Scholar
  22. EU (2000) Directive 2000/60/CE of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, EU, Brussels, 172 ppGoogle Scholar
  23. Gan FF, Koehler KL (1990) Goodness-of-fit tests based on P-P probability plots. Technometrics 32:289–303CrossRefGoogle Scholar
  24. Gardner KK, Vogel RM (2005) Predicting ground water nitrate concentration from land use. Ground Water 43(3):343–352CrossRefGoogle Scholar
  25. Gogu CR, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and ground water modelling. Hydrogeol J 9:555–569CrossRefGoogle Scholar
  26. Grath J, Scheidleder A, Uhlig S, Weber K, Kralik M, Keimel T, Gruber D (2001) The EU Water Framework Directive: statistical aspects of the identification of ground water pollution trends, and aggregation of monitoring results. Final report. Austrian Federal Ministry of Agriculture and Forestry, Environment and Water Management, Vienna (Ref.: 41.046/01-IV1/00 and GZ 16 2500/2-I/6/00) and Grant Agreement Ref.: Subv 99/130794, European Comission, Brussels, 63 ppGoogle Scholar
  27. Hall DW (1992) Effects of nutrient management on nitrate levels in ground water near Ephrata, Pennsylvania. Ground Water 30(5):720–730CrossRefGoogle Scholar
  28. Hallet V (1998) Étude de la contamination de la nappe aquifère de Hesbaye par les nitrates: hydrogéologie, hydrochimie et modélisaion mathématique des écoulements et du transport en milieu saturé [Contamination of the Hesbaye aquifer by nitrates: hydrogeology, hydrochemistry and mathematical modeling]. PhD Thesis, University of Liège. Belgium, 361 ppGoogle Scholar
  29. Hanson CR (2002) Nitrate concentration in Canterbury ground water: a review of existing data. Report R02/17 ISBN 1-86937-457-6, Environment Canterbury, Christchurch, UK, 87 ppGoogle Scholar
  30. Hantzsche NN, Finnemore EJ (1992) Predicting ground-water nitrate-nitrogen impacts. Ground Water 30(4):490–499CrossRefGoogle Scholar
  31. Harter T, Davis H, Mathews MC, Meyer RD (2002) Shallow ground water quality on dairy farms with irrigated forage crops. J Cont Hydrol 55:287–315CrossRefGoogle Scholar
  32. Helsel DR, Hirsch RM (1995) Statistical methods in water resources. Techniques of Water Resources Investigations, Book 4, Chapter A3, US Geological Survey, Reston, VA, 510 ppGoogle Scholar
  33. Henderson AR (2005) Testing experimental data for univariate normality. Clin Chim Acta 366(1–2):112–129Google Scholar
  34. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18(1):107–121Google Scholar
  35. Hirsch RM, Alexander RB, Smith RA (1991) Selection of methods for the detection and estimation of trends in water quality. Water Resour Res 27(5):803–813CrossRefGoogle Scholar
  36. Hudak PF (2000) Regional trends in nitrate content of Texas ground water. J Hydrol 228:37–47CrossRefGoogle Scholar
  37. Iversen TM, Grant R, Nielsen K (1998) Nitrogen enrichment of European inland and marine waters with special attention to Danish policy measures. Environ Pollut 102(S1):771–780CrossRefGoogle Scholar
  38. Johnsson H, Larsson M, Martensson K, Hoffmann M (2002) SOILNDB: a decision support tool for assessing nitrogen leaching losses from arable land. Environ Model Softw 17(6):505–517CrossRefGoogle Scholar
  39. Kahya E, Kalayci S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144CrossRefGoogle Scholar
  40. Kendall MG (1975) Rank correlation methods. Griffin, London, UKGoogle Scholar
  41. Kumagai S, Kusaka Y, Goto S (1997) Log-normality of distribution of occupational exposure concentrations to cobalt. Ann Occup Hyg 41(3):281–286Google Scholar
  42. LaBolle EM, Fogg GE, Eweis EB (2006) Diffusive fractionation of 3H and 3He in groundwater and its impact on groundwater age estimates. Water Resour Res 42:W07202. DOI  10.1029/2005WR004756 CrossRefGoogle Scholar
  43. Lake IR, Lovett AA, Hiscock KM, Betson M, Foley A, Sünnenberg G, Evers S, Fletcher S (2003) Evaluation factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J Environ Manage 68:315–328CrossRefGoogle Scholar
  44. Lee J-Y, Lee K-K (2003) Viability of natural attenuation in a petroleum-contaminated shallow sandy aquifer. Environ Pollut 126:201–212CrossRefGoogle Scholar
  45. Liu GD, Wu WL, Zhang J (2005) Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in ground water in northern China. Agric Ecosyst Environ 107:211–250CrossRefGoogle Scholar
  46. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259CrossRefGoogle Scholar
  47. Mitchell RJ, Scott Babcock R, Gelinas S, Nanus L, Stasney DE (2003) Nitrate distributions and source identification in the Abbotsford-Sumas aquifer, northwester Washington State. J Environ Qual 32:789–800CrossRefGoogle Scholar
  48. Mohamed MAA, Terao H, Suzuki R, Babiker IS, Ohta K, Kaori K, Kato K (2003) Natural denitrification in the Kakamigahara ground water basin, Gifu prefecture, central Japan. Sci Total Environ 307:191–201CrossRefGoogle Scholar
  49. Mudholkar GS, Marchetti CE, Lin CT (2002) Independence characterizations and testing normality against restricted skewness-kurtosis alternatives. J Stat Plan Inference 104:485–501CrossRefGoogle Scholar
  50. Nunes LM, Paralta E, Cunha MC, Ribeiro L (2004) Ground water nitrate monitoring network optimization with missing data. Water Resour Res 40, W02406. DOI  10.1029/2003WR002469
  51. Oren O, Yechieli Y, Böhlke JK, Dody A (2004) Contamination of ground water under cultivated fields in an arid environment, central Arava Valley, Israel. J Hydrol 290:312–328CrossRefGoogle Scholar
  52. Rajagopal R, Tobin G (1989) Expert opinion and ground-water quality protection: the case of nitrate in drinking water. Ground Water 27(6):835–847CrossRefGoogle Scholar
  53. Serrano VL, Mateios VL, García JA (1999) Trend analysis of monthly precipitation over the Iberian Península for the period 1921–1995. Phys Chem Earth (B) 42(2):85–90Google Scholar
  54. Shapiro SS, Francia RS (1972) An approximate analysis of variance test for normality. J Am Stat Assoc 67:215–216CrossRefGoogle Scholar
  55. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611Google Scholar
  56. Smith RT, Ritzi JRW (1993) Designing a nitrate monitoring program in a heterogeneous, carbonate aquifer. Ground Water 31(4):576–584CrossRefGoogle Scholar
  57. Spalding RF, Watts DG, Schepers JS, Burbach ME, Exner ME, Poreda RJ, Martin GE (2001) Controlling nitrate leaching in irrigated agriculture. J Environ Qual 30:1184–1194CrossRefGoogle Scholar
  58. Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69:730–737CrossRefGoogle Scholar
  59. Stoate C, Boatman D, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63(3):337–365CrossRefGoogle Scholar
  60. Strebel O, Duynisveld WHM, Böttcheer J (1989) Nitrate pollution of ground water in western Europe. Agric Ecosyst Environ 26(3–4):189–214CrossRefGoogle Scholar
  61. Taylor CH, Loftis JC (1989) Testing for trend in lake and ground water quality time series. Water Resour Bull 25(4):715–726Google Scholar
  62. Thorburn PJ, Biggs JS, Weier KL, Keating BA (2003) Nitrate in ground waters of intensive agricultural areas in coastal Northeastern Australia. Agric Ecosyst Environ 94:49–58CrossRefGoogle Scholar
  63. USEPA (2000) Practical methods for data analysis. Report EPA QA/G-9 QA00 Version, US Environmental Protection Agency (USEPA), 219 ppGoogle Scholar
  64. Valverde Ramírez MC, de Campos Velho HF, Ferreira NJ (2005) Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J Hydrol 301:146–162CrossRefGoogle Scholar
  65. van Belle G, Hughes JP (1984) Nonparametric tests for trend in water quality. Water Resour Res 20(1):127–136Google Scholar
  66. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):161–168CrossRefGoogle Scholar
  67. Wojda P, Dachy M, Popescu IC, Ruthy I, Gardin N, Dassargues A, Brouyère S (2005) Appui à la conception de la structure, à l’interfaçage et à l’enrichissement de la base de données hydrogéologiques de la Région Wallonne [Support to structuring, interfacing and developing the Walloon Region Hydrogeological Database]. GeoMAC (Hydrogeology)-Walloon Region, University of Liège, Belgium, 48 ppGoogle Scholar
  68. Yu Y-S, Zou S, Whittemore D (1993) Non-parametric trend analyses of water quality data of river in Kansas. J Hydrol 150:61–80CrossRefGoogle Scholar
  69. Zhang J, Wu Y (2005) Likelihood-ratio tests for normality. Comput Stat Data Anal 49(3):709–721CrossRefGoogle Scholar
  70. Zhang Q, Liu C, Xu C-y, Xu Y, Jiang T (2005) Observed trends of annual maximum water level and streamflow during the past 130 years in the Yangtze River basin, China. J Hydrol 324:255–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jordi Batlle Aguilar
    • 1
  • Philippe Orban
    • 1
  • Alain Dassargues
    • 1
  • Serge Brouyère
    • 1
    • 2
    Email author
  1. 1.Department of ArGEnCoUniversity of LiègeSart TilmanBelgium
  2. 2.Aquapôle ULgUniversity of LiègeSart TilmanBelgium

Personalised recommendations