Advertisement

Hydrogeology Journal

, Volume 15, Issue 7, pp 1239–1250 | Cite as

Permeability upscaling of fault zones in the Aztec Sandstone, Valley of Fire State Park, Nevada, with a focus on slip surfaces and slip bands

  • Ramil Ahmadov
  • Atilla Aydin
  • Mohammad Karimi-Fard
  • Louis J. Durlofsky
Paper

Abstract

The effect of open and filled slip surfaces on the upscaled permeability of two fault zones with 6 and 14 m strike-slip in an eolian Aztec Sandstone, Nevada, USA is evaluated. Each fault zone is composed of several fault components: a fault core, bounded by filled through-going slip surfaces referred to as slip bands, and a surrounding damage zone that contains joints and deformation bands. Slip band geometry, composition, and petrophysical properties are characterized. Measurements and modeling show that slip band permeabilities can vary over 12 orders of magnitude depending on the degree of fill within the slip bands. The slip bands along with other fault zone components are represented in finite volume numerical calculations and the impact of various slip-band representations on upscaled fault zone permeability is tested. The results show 2 orders of magnitude variation in upscaled fault zone permeability in the fault-normal direction and a factor of 2 variation in the fault-parallel direction. The numerical results presented here are compared to the earlier numerical results in which structured Cartesian grids were used for the numerical simulations, and are in qualitative agreement with earlier calculations but use about a factor of 250–400 fewer numerical cells.

Keywords

Fault Fractured rocks Slip surface Eolian sandstone Hydraulic properties 

Résumé

L’effet d’ouverture et du remplissage des surfaces de glissement à l’échelle supérieure de deux zones de failles de rejet de 6 et 14 mètres dans les grés éoliens d’Aztec, au Nevada, USA, est évalué. Chaque zone de faille comprend plusieurs composantes de failles : une faille principale, bornée de surfaces de glissement et de remplissage référées comme les bandes de glissement. La géométrie des bandes de glissement, leur composition et leurs propriétés pétrophysiques sont détaillées.Des mesures et la modélisation montrent que les perméabilités des bandes de glissement peuvent varier d’un ordre de 12, selon le degré de remplissage dans les bandes de glissement. Les bandes de glissement et les autres composantes de la zone de faille sont représentées par calculs sur des volumes numériques finis, et l’impact de différentes représentations des bandes de glissement sur la perméabilité à l’échelle supérieure est testé. Les résultats montrent deux ordres de magnitude de variation de la perméabilité de la zone de faille perpendiculairement à la faille, et un facteur de 2 variations dans la direction parallèle a la faille. Les résultats numériques présentés ici sont comparés aux résultats plus anciens, issus de simulations numériques basées sur des grilles cartésiennes. Les résultats présentés sont en bon accord avec les résultats plus anciens, bien qu’ils nécessitent 250 à 400 moins de cellules numériques.

Resumen

Se evalúa el efecto de las superficies de deslizamiento abiertas y rellenas, en el incremento de la permeabilidad de dos zonas de falla con 6 y 14 m de desplazamiento en la dirección del rumbo, en la Arenisca Aztec, Nevada, EE.UU, que es de origen eólico. Cada zona de la falla está compuesta de varios componentes: un centro de la falla, limitado por superficies de deslizamiento atravesadas y rellenas, conocidas como bandas deslizadas, y una zona de daño circundante que contiene diaclasas y bandas de deformación. Se caracterizan la geometría, composición, y propiedades petrofísicas de las bandas deslizadas, La mediciones y el modelamiento muestran que las permeabilidades de la bandas deslizadas pueden variar mas de 12 órdenes de magnitud, dependiendo del grado de relleno dentro de las bandas deslizadas. Las bandas deslizadas, junto con otros componentes de zona de falla, se representan en cálculos numéricos de volumen finito y se prueba el impacto de varias representaciones de bandas deslizadas sobre el incremento de la permeabilidad en la zona de falla. Los resultados muestran variación de 2 órdenes de magnitud en el incremento de la permeabilidad de la zona de falla, en la dirección normal a la falla y un factor de variación 2 en la dirección paralela a la falla. Se comparan los resultados numéricos presentados aquí a los resultados numéricos iniciales, en los cuales se usaron coordenadas Cartesianas estructuradas, para las simulaciones numéricas,y están cualitativamente de acuerdo con los cálculos iniciales, pero utiliza un factor alrededor de 250–400 menos celdas numéricas.

Notes

Acknowledgements

This study was supported by Department of Energy Grant No. DE-FG03-94ER14462 provided to Stanford Rock Fracture Project. We would like to thank Youngseuk Keehm for help with numerical calculations and Robert Jones for help with SEM. Ramil Ahmadov acknowledges help in the field provided by Ghislain De Joussineau and Nickolas Davatzes. We also thank anonymous reviewers for useful suggestions. MKF and LJD gratefully acknowledge partial financial support from the industrial affiliates of the Stanford University Reservoir Simulation Research Consortium (SUPRI-B).

References

  1. Abd El-Samie S, Sadek M (2001) Groundwater recharge and flow in the Lower Cretaceous Nubian Sandstone aquifer in the Sinai Peninsula, using isotopic techniques and hydrochemistry. Hydrogeol J 9:378–389CrossRefGoogle Scholar
  2. Ahmadov R (2006) Petrophysics and permeability of fault zones in sandstone with a focus on fault slip surfaces and slip bands. MSc Thesis, Stanford University, USAGoogle Scholar
  3. Antonellini M, Aydin A (1994) Effect of faulting on fluid flow in porous sandstones: petrophysical properties. Am Assoc Petrol Geol Bull 78:355–377Google Scholar
  4. Antonellini M, Aydin A, Pollard D, D’Onfro P (1994) Petrophysical study of faults in sandstone using petrographic image analysis and x-ray computerized tomography. Pure Appl Geophys 143:181–201CrossRefGoogle Scholar
  5. Araújo L, França A, Potter P (1999) Hydrogeology of the Mercosul aquifer system in the Paraná and Chaco-Paraná Basins, South America, and comparison with the Navajo-Nugget aquifer system, USA. Hydrogeol J 7:317–336CrossRefGoogle Scholar
  6. Aydin A (2000) Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar Pet Geol 17:797–814CrossRefGoogle Scholar
  7. Beitler B, Parry W, Chan M (2005) Fingerprints of fluid flow: chemical diagenetic history of the Jurassic Navajo Sandstone, southern Utah, USA. J Sediment Res 75:547–561CrossRefGoogle Scholar
  8. Blakey R (1989) Triassic and Jurassic geology of the southern Colorado Plateau. Ariz Geol Soc Dig 17:369–396Google Scholar
  9. Bohannon R (1983) Mesozoic and Cenozoic tectonic development of the Muddy, north Muddy, and northern Black Mountains, Clark County, Nevada. Geol Soc Am Mem 157:125–148Google Scholar
  10. Caine J, Forster C (1999) Fault zone architecture and fluid flow: insights from field data and numerical modeling. In: Faults and subsurface fluid flow in the shallow crust. Am Geophys Union Monogr 113:101–127Google Scholar
  11. Caine J, Evans J, Forster C (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028CrossRefGoogle Scholar
  12. Chan M, Parry W, Bowman J (2000) Diagenetic hematite and manganese oxides and fault-related fluid flow in Jurassic sandstones, southeastern Utah. Am Assoc Petrol Geol Bull 84:1281–1310Google Scholar
  13. Chen Y, Durlofsky L (2006) Adaptive local-global upscaling for general flow scenarios in heterogeneous formations. Transp Porous Media 62:157–185CrossRefGoogle Scholar
  14. Davatzes N, Aydin A (2004) Fault linkage and evolution of the fault core in sandstone, Valley of Fire State Park, Nevada: a preliminary report. Paper presented at the 15th Stanford Rock Fracture Project Meeting, Stanford University, Stanford, CA, USA, June 2004Google Scholar
  15. Durlofsky L (1992) Modeling fluid flow through complex reservoir beds. SPE Form Eval 7:315–322Google Scholar
  16. Eichhubl P, Taylor W, Pollard D, Aydin A (2004) Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire, Nevada: evidence for the coupling of hydrogeologic, diagenetic, and tectonic processes. Geol Soc Am Bull 116:1120–1136CrossRefGoogle Scholar
  17. Flodin E, Aydin A (2004) Evolution of a strike-slip fault network, Valley of Fire State Park, southern Nevada. Geol Soc Am Bull 116:42–59CrossRefGoogle Scholar
  18. Flodin E, Aydin A, Durlofsky L, Yeten B (2001) Representation of fault zone permeability in reservoir flow models. SPE paper 71671, SPE, Houston, TX, USAGoogle Scholar
  19. Flodin E, Durlofsky L, Aydin A (2004) Upscaled models of flow and transport in faulted sandstone: boundary condition effects and explicit fracture modeling. Pet Geosci 10:173–181CrossRefGoogle Scholar
  20. Flodin E, Gerdes M, Aydin A, Wiggins W (2005) Petrophysical properties of cataclastic fault rock in sandstone. In: Sorkhabi R, Tsuji Y (eds) Faults, fluid flow, and petroleum traps. Am Assoc Petrol Geol Mem 85:197–217Google Scholar
  21. Heilweil V, Freethey G (1992) Hydrology of the Navajo aquifer in southwestern Utah and northwestern Arizona, including computer simulation of ground-water flow and water-level declines that could be caused by proposed withdrawals. In: Harty K (ed) Engineering and environmental geology of southwestern Utah. Utah Geol Assoc Publ 21:213–223Google Scholar
  22. Jourde H, Flodin E, Aydin A, Durlofsky L, Wen X (2002) Computing permeability of fault zones in eolian sandstone from outcrop measurements. Am Assoc Petrol Geol Bull 86:1187–1200Google Scholar
  23. Karimi-Fard M, Durlofsky L, Aziz K (2004) An efficient discrete fracture model applicable for general purpose reservoir simulators. SPE J 9(2):227–236Google Scholar
  24. Keehm Y (2003) Computational rock physics: Transport properties in porous media and applications. PhD Thesis, Stanford University, USAGoogle Scholar
  25. Keehm Y, Mukerji T, Nur A (2004) Permeability prediction from thin sections: 3D reconstruction and Lattice-Boltzmann flow simulation. Geophys Res Lett 31:4CrossRefGoogle Scholar
  26. Manzocchi T, Walsh J, Nell P, Yielding G (1999) Fault transmissibility multipliers for flow simulations models. Pet Geosci 5:53–63Google Scholar
  27. Marzolf J (1983) Changing wind and hydrologic regimes during deposition of the Navajo and Aztec sandstones, southwestern United States. In: Brookfield M, Ahlbrandt T (eds) Eolian sediments and processes. Elsevier, Amsterdam, pp 635–660Google Scholar
  28. Marzolf J (1990) Reconstruction of extensionally dismembered early Mesozoic sedimentary basins: southwestern Colorado plateau to the eastern Mojave Desert. In: Wernicke B (ed) Basin and range extensional tectonics near the latitude of Las Vegas, Nevada. Geol Soc Am Mem 176:477–500Google Scholar
  29. Matthäi S, Aydin A, Pollard D, Roberts S (1998) Numerical simulation of deviations from radial drawdown in a faulted sandstone reservoir with joints and zones of deformation bands. In: Jones G, Fisher Q, Knipe R (eds) Faulting, fault sealing and fluid flow in hydrocarbon reservoirs. Geol Soc Spec Publ 147:157–191Google Scholar
  30. Myers R (1999) Structure and hydraulics of brittle faults in sandstone. PhD Thesis, Stanford University, USAGoogle Scholar
  31. Myers R, Aydin A (2004) The evolution of faults formed by shearing across joint zones in sandstone. J Struct Geol 26:947–966CrossRefGoogle Scholar
  32. National Research Council (NRC) Committee on Fracture Characterization and Fluid Flow (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy, Washington, DC, 551 ppGoogle Scholar
  33. Nelson R (1985) Geological analysis of naturally fractured reservoirs. Gulf, Houston, TX, USA, 320 ppGoogle Scholar
  34. Nelson R, Handin J (1977) Experimental study of fracture permeability in porous rock. Am Assoc Petrol Geol Bull 61:227–236Google Scholar
  35. Odling N, Harris S, Knipe R (2004) Permeability scaling properties of fault damage zones in siliclastic rocks. J Struct Geol 26:1727–1747CrossRefGoogle Scholar
  36. Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278CrossRefGoogle Scholar
  37. Scholz C (1990) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, pp 439Google Scholar
  38. Shewchuk J (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. Paper presented at First Workshop on Applied Computational Geometry. Assoc for Comput Mach, Philadelphia, USA, May 1996, pp 124–133Google Scholar
  39. Shipton Z, Evans J, Robeson K, Forster C, Snelgrove S (2002) Structural heterogeneity and permeability in faulted eolian sandstone: implications for subsurface modeling of faults. Am Assoc Petrol Geol Bull 86:863–883Google Scholar
  40. Smith L, Forster C, Evans J (1990) Interaction of fault zones, fluid flow, and heat transfer at the basin scale. In: Hydrogeology of low permeability environments. Int Assoc Hydrogeol, Sel Pap Hydrogeol 2:41–67Google Scholar
  41. Sternlof K, Chapin J, Pollard D, Durlofsky L (2004) Permeability effects of deformation band arrays in sandstone. Am Assoc Petrol Geol Bull 88:1315–1329Google Scholar
  42. Sternlof K, Karimi-Fard M, Pollard D, Durlofsky L (2006) Flow effects of compaction bands in sandstone at scales relevant to aquifer and reservoir management. Water Resour Res 42, W07425, DOI  10.1029/2005WR004664
  43. Taylor W, Pollard D (2000) Estimation of in situ permeability of deformation bands in porous sandstone, Valley of Fire, Nevada. Water Resour Res 36:2595–2606CrossRefGoogle Scholar
  44. Taylor W, Pollard D, Aydin A (1999) Fluid flow in discrete joint sets: field observations and numerical simulations. J Geophys Res 104:28983–29006CrossRefGoogle Scholar
  45. Wen X, Gomez-Hernandez J (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxiiGoogle Scholar
  46. Zamora Valcarce G, Zapata T, Ansa A, Selva G (2006) Three-dimensional structural modeling and its application for development of the El Porton Field, Argentina. Am Assoc Petrol Geol Bull 90:307–319Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ramil Ahmadov
    • 1
  • Atilla Aydin
    • 1
  • Mohammad Karimi-Fard
    • 2
  • Louis J. Durlofsky
    • 2
  1. 1.Department of Geological and Environmental SciencesStanford UniversityStanfordUSA
  2. 2.Department of Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations