Advertisement

Hydrogeology Journal

, Volume 15, Issue 6, pp 1221–1229 | Cite as

Obtaining stable redox potential readings in gneiss groundwater and mine water: difficulties, meaningfulness, and potential improvement

  • Wondemagegnehu A. GezahegneEmail author
  • Britta Planer-Friedrich
  • Broder J. Merkel
Technical Note

Abstract

Natural samples were run in three parallel flow-through cells in the laboratory in order to study the difficulties of obtaining stable redox potential readings, especially in gneiss groundwater and mine water with little redox buffer capacity. Redox potentials were recorded every 2 min for up to 5 days. Measured redox potentials were compared to means of partial potentials, modeled based on species-selective determinations of the most predominant redox-sensitive elements iron and nitrogen. Redox potentials stabilized reproducibly within minutes for a synthetic redox buffer solution and two well-buffered acid mine water samples at pH 2.3 and 3.5. For waters in redox disequilibrium, species-selective analytics might still be the better alternative compared to measuring the redox potential as summary parameter for modeling species distribution. In cases where the redox potential is the only readily available parameter, filtration and possibly acidification is recommended for quicker stabilization of redox potential readings and less deviations between measured and modeled values. A minimum of 2% was achieved in the samples investigated, however, often after measuring significantly longer than the previously suggested 30 min. Final stabilization could take up to several hours in waters with low buffer capacity.

Keywords

Redox potential Electrochemistry Equipment/field techniques Hydrochemistry Hydrochemical modeling 

Résumé

Afin d’étudier les difficultés à obtenir des lectures stables des potentiels redox, notamment sur les eaux souterraines présentes dans des gneiss et dans les mines, qui présentent un faible pouvoir tampon, des échantillons ont été prélevés régulièrement en laboratoire, dans trois cellules d’écoulement parallèles. Les potentiels redox ont été enregistrés toutes les deux minutes durant cinq jours. Ces potentiels redox mesurés ont été comparés aux moyennes des potentiels partiels, modélisés à partir des déterminations sélectives des espèces chimiques des éléments sensibles aux conditions redox les plus prédominants, le fer et l’azote. Les potentiels redox se sont systématiquement stabilisés en quelques minutes pour une solution tampon synthétique et pour deux échantillons d’eaux de mines acides bien tamponnées à pH 2.3 à 3.5. Pour les eaux en déséquilibre redox, des analyses sélectives des espèces chimiques seraient toujours la meilleure alternative aux mesures sommaires du potentiel redox, pour modéliser la distribution des espèces. Dans les cas où le potentiel redox est le seul paramètre directement disponible, une filtration et éventuellement une acidification sont recommandées pour obtenir une stabilisation plus rapide des lectures des potentiels redox, et pour réduire les écarts entre les valeurs mesurées et modélisées. Un minimum de 2% a été atteint parmi les échantillons étudiés, mais en prolongeant souvent les mesures au-delà des 30 minutes suggérées initialement. La stabilisation finale pourrait prendre jusqu’à plusieurs heures dans des eaux à faible pouvoir tampon.

Resumen

Se han llevado a cabo experimentos en laboratorio sobre tres muestras naturales en tres células de flujo paralelas, para estudiar las dificultades en la obtención de medidas de potencial redox estables, especialmente en aguas subterráneas procedentes de gneisses y en agua de minas con capacidades tampón redox bajas. Los potenciales redox fueron medidos cada dos minutos durante más de cinco días. Los potenciales redox medidos fueron comparados con medias de potenciales parciales, modelizados en base a determinaciones selectivas de especies de hierro y nitrógeno, los elementos predominantes redox-sensitivos. Los potenciales redox se estabilizaron de forma reproducible en minutos en una solución redox tampón y dos muestras de agua ácida de pozos de mina a pH 2.3 y 3.5. Para aguas en desequilibrio redox los análisis selectivos por especies deberían ser todavía la mejor alternativa comparados con la medida del potencial redox como una suma de parámetros para modelizar la distribución de especies. En casos en los que el potencial redox sea el único parámetro fácilmente obtenible, se recomienda una filtración y una posible acidificación para una estabilización más rápida de las medidas de potencial redox y que haya menos desviaciones entre los valores medidos y los del modelo. En las muestras investigadas se consiguió un mínimo de un 2%, sin embargo, a menudo incluso después de medidas significativamente más largas que las previamente sugeridas de 30 minutos. La estabilización final tuvo lugar después de más de varias horas en aguas con capacidad tampón baja.

Notes

Acknowledgements

The scientific and technical assistance of Manuela Junghans, Margit Mau, Hajo Peter, Michael Sekul, and Tino Beyer is gratefully acknowledged. We would also like to thank the three anonymous reviewers for their valuable comments. Gezahegne was generously supported by a grant from the German Academic Exchange Service.

Supplementary material

10040_2007_174_MOESM1_ESM.doc (99 kb)
Electronic Supplementary Material (DOC 101 kb)

References

  1. Ball JW, Nordstrom DK (1991) User’s manual for WATEQ4F, with revised thermodynamic database and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geol Survey Open-File Report, pp 91–183Google Scholar
  2. Berner RA (1963) Electrode studies in hydrogen sulphide in marine sediments. Geochim Cosmochim Acta 27:563–575CrossRefGoogle Scholar
  3. Hostettler JD (1984) Electrode electrons, aqueous electrons, and redox potentials in natural waters. Am J Sci 284:734–759CrossRefGoogle Scholar
  4. Keely JF (1989) Performance evaluation of pump-and-treat remediations. EPA/540/4-89/005, U.S. EPA, Kerr Environmental Research LaboratoryGoogle Scholar
  5. Langmuir D (1997) Aqueous environmental geochemistry. Prentice-Hall, New York, p 600Google Scholar
  6. Linder RD, Runnels DD (1984) Groundwater redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modelling. Science 225(14):925–927Google Scholar
  7. McCleskey RB, Nordstrom DK, Maest AS (2004) Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results. Appl Geochem 19:995–1009CrossRefGoogle Scholar
  8. Morris JC, Stumm W (1967) Redox equilibria and measurements of potentials in the aquatic environment. In: Stumm W (ed) Equilibrium concepts in natural water system. Adv Chem Ser 67:270–285Google Scholar
  9. Nordstrom DK (2000) Aqueous redox chemistry and the behaviour of iron in acid mine waters. In: EPA workshop on monitoring oxidation-reduction processes for groundwater restoration. Workshop summary, Dallas, Texas, April 25–27, 2000Google Scholar
  10. Nordstrom DK, Wilde FD (1998) Reduction-oxidation potential (electrode method). In: Wilde FD, Radtke DB, Gibs J, Iwatsubo RT (eds) National field manual for the collection of water-quality data. US Geol Survey Water-Resour Invest, book 9: handbooks for water-resources investigations. A6.5, Book 9, 9/98Google Scholar
  11. Nordstrom DK, Jenne EA, Ball JW (1979) Redox equilibria of iron in acid mine waters. In: Jenne EA (ed) Chemical modelling in aqueous systems-speciation, sorption, solubility and kinetics. Am Chem Soc 93:51–80Google Scholar
  12. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol Survey Water-Resour Invest Rept 99–4259Google Scholar
  13. Puls RW, Barcelona MJ (1996) Low-flow (minimal drawdown) ground-water sampling procedure. EPA/540/S-95/504, p 12Google Scholar
  14. Siems PL (2004) History of utilization of water power in the mines of Freiberg, Saxony. Min Hist 15(4–5):52–57Google Scholar
  15. Thorstenson DC (1970) Equilibrium distribution of small organic molecules in natural waters. Geochim Cosmochim Acta 34:745–770CrossRefGoogle Scholar
  16. Thorstenson DC (1984) The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geol Survey Open-File Report 84–072Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Wondemagegnehu A. Gezahegne
    • 1
    Email author
  • Britta Planer-Friedrich
    • 1
  • Broder J. Merkel
    • 1
  1. 1.Department of Geology, Chair of HydrogeologyTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations