Advertisement

Hydrogeology Journal

, Volume 15, Issue 6, pp 1131–1145 | Cite as

Optimizing a piezometric network in the estimation of the groundwater budget: a case study from a crystalline-rock watershed in southern India

  • Faisal K. Zaidi
  • Shakeel Ahmed
  • Benoit Dewandel
  • Jean-Christophe Maréchal
Report

Abstract

An estimate of the groundwater budget at the catchment scale is extremely important for the sustainable management of available water resources. Water resources are generally subjected to over-exploitation for agricultural and domestic purposes in agrarian economies like India. The double water-table fluctuation method is a reliable method for calculating the water budget in semi-arid crystalline rock areas. Extensive measurements of water levels from a dense network before and after the monsoon rainfall were made in a 53 km2 watershed in southern India and various components of the water balance were then calculated. Later, water level data underwent geostatistical analyses to determine the priority and/or redundancy of each measurement point using a cross-validation method. An optimal network evolved from these analyses. The network was then used in re-calculation of the water-balance components. It was established that such an optimized network provides far fewer measurement points without considerably changing the conclusions regarding groundwater budget. This exercise is helpful in reducing the time and expenditure involved in exhaustive piezometric surveys and also in determining the water budget for large watersheds (watersheds greater than 50 km2).

Keywords

Groundwater budget India Granitic watershed Geostatistics Piezometric survey 

Résumé

L’estimation du bilan en eau à l’échelle du bassin versant est essentielle pour une gestion durable des ressources. Dans des économies agraires comme en Inde, les ressources en eau souterraine sont généralement surexploitées pour des usages agricoles et domestiques. La méthode de double fluctuation du niveau piézométrique, est une methode fiable pour calculer le bilan en eau en contexte cristallin semi-aride. Plusieurs campagnes piézométriques détaillées ont couvert un réseau dense sur un bassin versant de 53 km2, au sud de l’Inde, avant et après la mousson, et ont permis de calculer plusieurs composantes du bilan en eau. Les données piézométriques ont ensuite été soumises à des analyses statistiques, afin de déterminer les priorités et redondances sur chaque point de mesure par une méthode de validation croisée. De ces analyses est né un réseau optimal, à partir duquel les composantes du bilan en eau ont été recalculées. Il a été mis en évidence qu’un tel réseau optimisé, s’il nécessitait beaucoup moins de points de mesure, ne changeait pas fondamentalement les conclusions sur le bilan en eau. Cet exercice est utile pour réduire le temps et le coût qu’impliquent la réalisation de campagnes piézométriques exhaustives, mais aussi pour déterminer le bilan en eau sur des bassins versants étendus (surface supérieure à 50 km2).

Resumen

Una estimación del balance de aguas subterráneas a escala de cuenca es muy importante para la gestión sostenible de los recursos disponibles de agua. Los recursos hídricos están generalmente sujetos a sobreexplotación para la agricultura y el uso doméstico en economías agrarias como es el caso de la India. El método de fluctuación doble del nivel piezométrico, es metodo fiable para el cálculo del balance hídrico en áreas semiáridas de rocas cristalinas. Se han llevado a cabo medidas extensivas de niveles de agua procedentes de una densa red de control antes y después de las lluvias monzónicas en una cuenca al sur de India y se han calculado varios componentes del balance de agua. Posteriormente, se llevaron a cabo análisis geoestadísticos con los datos de nivel de agua para determinar la prioridad y/o redundancia de cada punto de medida usando el método de validación cruzada. A partir de estos análisis se obtuvo una red de control óptima. La red de control fue entonces utilizada para recalcular los componentes del balance hídrico. Se ha establecido que una red de control optimizada da lugar a muchos menos puntos de medida sin cambiar considerablemente las conclusiones que tienen que ver con el balance hídrico. Este ejercicio ayuda a reducir el tiempo y el costo de campañas piezométricas exhaustivas y también a determinar el balance hídrico para grandes cuencas (cuencas mayores de 50 km2).

Notes

Acknowledgements

The authors express their thanks to the Director, National Geophysical Research Institute, Hyderabad for his kind permission for carrying out the study. The first author would like to thank the University Grants Commission for providing scholarship under the Junior Research Fellowship Program and also the French Embassy in India as a part of the work was carried out in France under the Sandwich Fellowship Program.

References

  1. Ahmed S, Gupta CP (1989) Stochastic spatial prediction of hydrogeologic parameters: use of cross-validation in Krigings, vol III. In: Gupta et al (eds) Proc of the Internat Groundwater Workshop, Hyderabad, India, Feb–March 1989, pp 77–90Google Scholar
  2. Ahmed S, Bertrand F, Saxena VK, Subrahmanyam K, Touchard F (2003) A geostatistical method of determining priority of measurement wells in a fluoride monitoring network in an aquifer. J Appl Geochem 4(2B):576–585Google Scholar
  3. Beekman HE, Xu Y (2003) Review of groundwater recharge estimation in arid and semiarid Southern Africa. Council for Scientific and Industrial Research (South Africa) and University of the Western Cape Report, CSIR, Pretoria, South AfricaGoogle Scholar
  4. Coudrain-Ribstein A, Pratx B, Talbi A, Jusserand C (1998) Is the evaporation from phreatic aquifers in arid zones independent of the soil characteristics? CR Acad Sci Paris, Sci Terre Planèt 326:159–165Google Scholar
  5. Dewandel B, Maréchal J-C, Lachassagne P, Wyns R, Krishnamurthy NS (2006) A conceptual hydrogeological model of hard rock aquifers structure and hydrodynamic parameters controlled by a multiphase weathering. J Hydrol 330(1–2):260–284Google Scholar
  6. Dewandel B, Gandolfi J-M, de Condappa D, Ahmed S (2007) An efficient methodology for estimating irrigation return flow coefficients of irrigated crops at watershed and seasonal scale, J Hydrol (in press)Google Scholar
  7. Galeazzi (2002) Groundwater balance of a hard-rock aquifer in a semi-arid area, Maheshwaram watershed: a case study. Centre d’hydrogeologie, Université de Neuchatel, Neuchatel, SwitzerlandGoogle Scholar
  8. Maréchal JC, Galeazzi L, Dewandel B, Ahmed S (2003) Importance of irrigation return flow on the groundwater budget of a rural basin in India. In: Servat E, Nazem W, Leduc C, Ahmed S (eds) Hydrogeologie des regions mediterranennes et semi-arides [Hydrogeology of semi-arid and Mediterranean regions]. IAHS Publication No. 278, IAHS, Montpellier, France, pp 62–67Google Scholar
  9. Maréchal JC, Dewandel B, Ahmed S, Galeazzi L, Zaidi FK (2006) Combining the groundwater budget and water table fluctuation methods to estimate specific yield and natural recharge. J Hydrol 329:281–293Google Scholar
  10. Pannatier Y (1996) VarioWin-software for spatial data analysis in 2D. Springer, New York, pp 91Google Scholar
  11. Raj P (2004) Classification and interpretation of piezometer well hydrographs in parts of southeastern peninsular India. Environ Geol 46:808–819CrossRefGoogle Scholar
  12. Schicht RJ, Walton WC (1961) Hydrologic budgets for three small watersheds in Illinois. Ill State Water Surv Rep Invest 40:40Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Faisal K. Zaidi
    • 1
  • Shakeel Ahmed
    • 1
  • Benoit Dewandel
    • 1
    • 3
  • Jean-Christophe Maréchal
    • 2
  1. 1.Indo-French Center for Groundwater ResearchNational Geophysical Research InstituteHyderabadIndia
  2. 2.IRD, Indo-French Cell for Water ScienceIndian Institute of ScienceBangaloreIndia
  3. 3.Discontinuous Aquifer Unit (Resource Assessment), BRGMMontpellierFrance

Personalised recommendations