Hydrogeology Journal

, Volume 15, Issue 5, pp 991–1007 | Cite as

Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA

Report

Abstract

Temporal monitoring of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate and indicators of mean groundwater age were used to evaluate the transport and fate of agricultural chemicals in groundwater and to predict the long-term effects in the regional aquifer system in the eastern San Joaquin Valley, California. Twenty monitoring wells were installed on a transect along an approximate groundwater flow path. Concentrations of DBCP and nitrate in the wells were compared to concentrations in regional areal monitoring networks. DBCP persists at concentrations above the US Environmental Protection Agency’s maximum contaminant level (MCL) at depths of nearly 40 m below the water table, more than 25 years after it was banned. Nitrate concentrations above the MCL reached depths of more than 20 m below the water table. Because of the intensive pumping and irrigation recharge, vertical flow paths are dominant. High concentrations (above MCLs) in the shallow part of the regional aquifer system will likely move deeper in the system, affecting both domestic and public-supply wells. The large fraction of old water (unaffected by agricultural chemicals) in deep monitoring wells suggests that it could take decades for concentrations to reach MCLs in deep, long-screened public-supply wells, however.

Keywords

Agriculture Contamination San Joaquin Valley Groundwater monitoring Groundwater age 

Résumé

Les suivis en temps du pesticide 1,2-dibromo-3-chloropropane (DBCP), des nitrates et des indicateurs de l’âge moyen des eaux souterraines ont été utilisés dans le but d’estimer le transport et le devenir des produits agrochimiques dans les eaux souterraines, et de prédire leurs effets à long terme dans le système aquifère régional de la San Joaquin Valley orientale, en Californie. Vingt piézomètres ont été implantés en alignement, approximativement selon une ligne de flux souterrain. Les concentrations en DBCP et nitrates mesurées dans les piézomètres ont été comparées aux concentrations dans les réseaux de surveillance du secteur. Le DBCP dépasse continuellement la valeur limite fixée par l’US Environmental Protection Agency, à des profondeurs proches de 40 m sous le niveau piézométrique, et plus de 25 ans après son interdiction. Les concentrations en nitrates supérieures aux limites se retrouvent à des profondeurs supérieures à 20 m sous le niveau piézométrique. Les écoulements verticaux sont prépondérants, du fait des pompages intensifs et de la réalimentation par irrigation. Les concentrations élevées (supérieures aux limites) présentes dans la tranche la plus superficielle de l’aquifère sont susceptibles de migrer plus en profondeur dans le système, et d’affecter les puits privés et ceux destinés à l’alimentation en eau potable. Cependant, la large proportion d’eau ancienne (non affectée par les produits agrochimiques) dans les piézomètres profonds suggère que les limites de concentration ne seront pas dépassées avant longtemps dans les puits d’alimentation en potable, qui sont profonds et présentent des hauteurs crépinées conséquentes.

Resumen

La monitorización temporal del plaguicida 1,2-dibromo-3cloropropano (DBCP) y de los nitratos así como indicadores de la media de edad del agua subterránea han sido utilizados para evaluar el transporte y el destino de los compuestos químicos en el agua subterránea y para predecir los efectos a largo plazo en el sistema acuífero regional situado al este del Valle de San Joaquín, California. Se instalaron veinte pozos de control en un transecto situado aproximadamente siguiendo la línea de flujo del agua subterránea. Las concentraciones de DBCP y nitratos en los pozos se compararon con las concentraciones en la red de control regional. DBCP persiste con concentraciones por encima de los niveles máximos contaminantes (MCL) de la Agencia de Protección Medioambiental de Estados Unidos a profundidades cercanas a los 40 fm por debajo del nivel piezométrico, más de 25 años después de haber sido prohibido. Las concentraciones de nitratos por encima de MCL alcanzaron profundidades de más de 20 m por debajo del nivel piezométrico. Debido al bombeo intensivo y los retornos de riego, las líneas de flujo verticales son dominantes. Las altas concentraciones (por encima de MCLs) situadas en la parte superficial del sistema acuífero regional probablemente se moverán más profundamente en el sistema, afectando a los pozos domésticos y a los pozos de abastecimiento. No obstante, la alta proporción de aguas antiguas (no afectadas por compuestos químicos de origen agrícola) en los pozos de control profundos sugiere que pueden pasar décadas para que se alcancen concentraciones que alcancen MCLs en profundidad, en los pozos de abastecimiento totalmente ranurados.

References

  1. Alexander RB, Smith RA (1990) County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985. U S Geol Surv Open-File Rep 90–130:12Google Scholar
  2. Almasri MN, Kaluarachchi JJ (2004) Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J Hydrol 295:225–245CrossRefGoogle Scholar
  3. Anton EC, Barnickol JL, Schnaible DR (1988) Nitrate in drinking water: report to the legislature. California Water Resources Control Board, Division of Water Quality Report 88–11WQ, California Water Resources Control Board, Sacramento, CA, 148 ppGoogle Scholar
  4. Battaglin WA, Goolsby DA (1994) Spatial data in geographic information system format on agricultural chemical use, land use, and cropping practices in the United States. US Geol Surv Water-Resour Invest Rep 94-4176Google Scholar
  5. Bertoldi GL, Johnston RH, Evenson KD (1991) Ground water in the Central Valley, California: a summary report. US Geol Surv Prof Pap 1401-A:44Google Scholar
  6. Bloom RA, Alexander M (1990) Microbial transformation of 1,2-dibromo-3-chloropropane (DBCP). J Environ Qual 19:722–726Google Scholar
  7. Böhlke JK (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10:153–179CrossRefGoogle Scholar
  8. Böhlke JK (2005) C. Tracermodel1: Excel workbook for calculation and presentation of environmental tracer data for simple groundwater mixtures In: International Atomic Energy Agency guidebook on the use of chlorofluorocarbons in hydrology. International Atomic Energy Agency, Vienna, pp 202–206Google Scholar
  9. Broers HP, van der Grift B (2004) Regional monitoring of temporal changes in groundwater quality. J Hydrol 296:192–220CrossRefGoogle Scholar
  10. Burlinson NE, Lee LA, Rosenblatt DH (1982) Kinetics and products of hydrolysis of 1,2-dibromo-3-chloropropane. Environ Sci Technol 16(9):627–632CrossRefGoogle Scholar
  11. Burow KR, Weissmann GS, Miller RD, Placzek G (1997) Hydrogeologic facies characterization of an alluvial fan near Fresno, California, using geophysical techniques. US Geol Surv Open-File Rep 97-46:15Google Scholar
  12. Burow KR, Shelton JL, Dubrovsky NM (1998a) Occurrence of nitrate and pesticides in ground water beneath three agricultural land-use settings in the eastern San Joaquin Valley, California. US Geol Surv Water-Resour Invest Rep 97-4284, 51 ppGoogle Scholar
  13. Burow KR, Stork SV, Dubrovsky NM (1998b) Nitrate and pesticides in ground water in the eastern San Joaquin Valley, California: occurrence and trends. US Geol Surv Water-Resour Invest Rep 98-4040A, 33 ppGoogle Scholar
  14. Burow KR, Panshin SY, Dubrovsky NM, VanBrocklin D, Fogg GE (1999) Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California: analysis of chemical data and ground-water flow and transport simulations. US Geol Surv Water-Resour Invest Rep 99-4059, 57 ppGoogle Scholar
  15. Busenberg E, Plummer LN (1992) Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of central Oklahoma. Water Resour Res 28(9):2257–2283CrossRefGoogle Scholar
  16. Busenberg E, Plummer LN (2000) Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resour Res 36(10):3011–3030CrossRefGoogle Scholar
  17. Busenberg E, Plummer LN, Bartholomay RC, Wayland JE (1998) Chlorofluorocarbons, sulfur hexafluoride, and dissolved permanent gases in ground water from selected sites in the and near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994–97. US Geol Surv Open-File Rep 98-274:72Google Scholar
  18. California Department of Food and Agriculture (1973) Pesticide use data. Computer tapes available from California Department of Food and Agriculture, Sacramento, CAGoogle Scholar
  19. California Department of Pesticide Regulation (1992) Sampling for pesticide residues in California well water: 1992 well inventory data base, cumulative report 1986–1992. Seventh Annual Report to the Legislature, State Department of Health Services, Office of Environmental Health Hazard Assessment, and the State Water Resources Control Board Report EH 93-02, California Water Resources Control Board, Sacramento, CA, 222 ppGoogle Scholar
  20. California Department of Pesticide Regulation (1993) Sampling for pesticide residues in California well water: 192 well inventory data base, 1993 update. Eighth Annual Report to the Legislature, State Department of Health Services, Office of Environmental Health Hazard Assessment, and the State Water Resources Control Board, Report EH 93-06, California Department of Pesticide Regulation, Sacramento, CA,167 ppGoogle Scholar
  21. California Department of Pesticide Regulation (1994) Sampling for pesticide residues in California well water: 1992 well inventory data base, 1994 update. Ninth Annual Report to the Legislature, California Department of Pesticide Regulation, Sacramento, CAGoogle Scholar
  22. California Department of Water Resources (1971) Land use in California: an index to surveys conducted by the California Department of Water Resources. Bulletin 176:16Google Scholar
  23. California Department of Water Resources (2001) Land use for Fresno County, California, for 2000 (digital data). California Department of Water Resources, Division of Planning and Local Assistance, Statewide Planning Branch, Land and Water Use, California Department of Pesticide Regulation, Sacramento, CAGoogle Scholar
  24. California State University Fresno Foundation (1994) Strategy for mitigation of DBCP contamination of Kings ground water basin. Contract report for California State Water Resources Control Board 1-234-250-0, California Water Resources Control Board, Sacramento, CA, variously pagedGoogle Scholar
  25. California State Water Resources Control Board (2002a) DBCP Groundwater Information Sheet, (http://www.waterboards.ca.gov/gama/docs/dbcp_oct2002_rev3.pdf). Cited 14 November 2006
  26. California State Water Resources Control Board (2002b) Nitrate/nitrite groundwater information sheet, (http://www.waterboards.ca.gov/gama/docs/nitrate_oct2002_rev3.pdf). Cited 14 November 2006
  27. Castro CE, Belser NO (1968) Biodehalogenation: reductive dehalogenation of the biocides ethylene dibromide, 1,2-dibromo-3-chloropropane, and 2,3-dibromobutane in soil. Environ Sci Technol 2(3):298–303Google Scholar
  28. Cehrs D, Soenke S, Bianchi WC (1980) A geologic approach to artificial recharge site selection in the Fresno-Clovis area, California. US Dep Agri Tech Bull 1604:73Google Scholar
  29. Cook PG, Böhlke JK (1999) Determining timescales for groundwater flow and solute transport: environmental tracers in subsurface hydrology. Kluwer, Boston, pp 1–30Google Scholar
  30. Deeley GM, Reinhard M, Stearns SM (1991) Transformation and sorption of 1,2-dibromo-3-chloropropane in subsurface samples collected at Fresno, California. J Environ Qual 20(3):547–556Google Scholar
  31. Domagalski JL (1997) Pesticides in surface and ground water of the San Joaquin-Tulare basins, California: analysis of available data, 1966 through 1992. US Geol Surv Water-Supply Pap 2468:74Google Scholar
  32. Domenico PA, Schwartz FW (1998) Physical and chemical hydrogeology, 2nd edn. Wiley, New York, p 506Google Scholar
  33. Dubrovsky NM, Kratzer CR, Brown LR, Gronberg JM, Burow KR (1998) Water quality in the San Joaquin-Tulare Basins, California, 1992–95. US Geol Surv Circ 1159:38Google Scholar
  34. Fishman MJ (1993) Methods of analysis by the US Geological Survey National Water Quality Laboratory: determination of inorganic and organic constituents in water and fluvial sediments. US Geol Surv Open-File Rep 93-125:127Google Scholar
  35. Fishman MJ, Friedman LC (1985) Methods for determination of inorganic and organic substances in water and fluvial sediments. US Geol Surv Open-File Rep 85-495:709Google Scholar
  36. Harter T, Heeren K, Weissmann G, Horwath W, Hopmans J (1998) Non-point source contamination in a heterogeneous, moderately deep vadose zone: the Kearney research site. Groundwater Quality: Remediation and Protection, Proceedings of the International Association of Hydrological Sciences Groundwater Quality Conference, Tubingen, Germany, September 1998, pp 257–263Google Scholar
  37. Hutson SS, Barber NL, Kenny JF, Linsey KS, Lumia DS, Maupin MA (2004) Estimated use of water in the United States in 2000. US Geol Surv Circ 1268:46Google Scholar
  38. Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken, NJ, 325 ppGoogle Scholar
  39. Kloos H (1996) 1,2 dibromo-3-chloropropane (DBCP) and ethylene dibromide (EDB) in well water in the Fresno/Clovis metropolitan area, California. Arch Environ Health 51(4):291–299CrossRefGoogle Scholar
  40. Koterba MT, Wilde FD, Lapham WW (1995) Ground-water data-collection protocols and procedures for the National water-quality assessment program: collection and documentation of water-quality samples and related data. US Geol Surv Open-File Rep 95-399:113Google Scholar
  41. Lindsey BD, Phillips SW, Donnelly CA, Speiran GK, Plummer LN, Böhlke JK, Focazio MJ, Burton WC, Busenberg E (2003) Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed. US Geol Surv Water-Resour Invest Rep 03-4035:39Google Scholar
  42. Loague K, Abrams RH (1999) DBCP contaminated groundwater: hot spots and nonpoint sources. J Environ Qual 28(2):429–446Google Scholar
  43. Loague K, Lloyd D, Nguyen A, Davis SN, Abrams RH (1998a) A case study simulation of DBCP groundwater contamination in Fresno County, California, 1: leaching through the unsaturated subsurface. J Contam Hydrol 29(2):109–136CrossRefGoogle Scholar
  44. Loague K, Abrams RH, Davis SN, Nguyen A, Stewart IT (1998b) A case study simulation of DBCP groundwater contamination in Fresno County, California, 2: transport in the saturated subsurface. J Contam Hydrol 29(2):137–163CrossRefGoogle Scholar
  45. Lowry P (1987) Hilmar ground water study. California Regional Water Quality Control Board-Central Valley Region files, variously paged, State of California, Central Valley Regional Water Quality Control Board, Sacramento, CAGoogle Scholar
  46. MacDonald AM, Darling WG, Ball DF, Oster H (2003) Identifying trends in groundwater quality using residence time indicators: an example from the Permian aquifer of Dumfries, Scotland. Hydrogeol J 11:504–517CrossRefGoogle Scholar
  47. Madison RJ, Brunett JO (1985) Overview of the occurrence of nitrate in ground water of the United States. In: National Water Summary 1984-hydrologic events, selected water-quality trends, and ground-water resources. US Geol Surv Water-Supply Pap 2275:93–105Google Scholar
  48. Miller RJ, Smith RB (1976) Nitrogen balance in the southern San Joaquin Valley. J Environ Qual 5(3):274–278Google Scholar
  49. Muir KS (1977) Ground water in the Fresno area, California. US Geol Surv Water-Resour Invest Rep 77-59:22Google Scholar
  50. Nightingale HI (1970) Statistical evaluation of salinity and nitrate content and trends beneath urban and agricultural areas: Fresno, California. Ground Water 8(1):22–28CrossRefGoogle Scholar
  51. Nightingale HI (1972) Nitrates in soil and ground water beneath irrigated and fertilized crops. Soil Sci 114(4):300–311CrossRefGoogle Scholar
  52. Nightingale HI, Bianchi WC (1974) Ground-water quality related to irrigation with imported surface or local ground water. J Environ Qual 3(4):356–361CrossRefGoogle Scholar
  53. Owens LB, Edwards WM, Van Keuren RW (1992) Nitrate levels in shallow ground water under pastures receiving ammonium nitrate or slow-release nitrogen fertilizer. J Environ Qual 21:607–613Google Scholar
  54. Page RW, LeBlanc RA (1969) Geology, hydrology, and water quality in the Fresno area, California. USGS, Water Res. OF, 21 plates, 70 ppGoogle Scholar
  55. Plummer LN, Busenberg E (2004) Chlorofluorocarbons in aquatic environments. In: International Atomic Energy Agency guidebook on the use of chlorofluorocarbons in hydrology, Vienna, International Atomic Energy Agency, Vienna, pp 8–12Google Scholar
  56. Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292CrossRefGoogle Scholar
  57. Rauschkolb RS, Mikkelsen DS (1978) Survey of fertilizer use in California, 1973. Berkeley, University of California, Division of Agricultural Sciences, Cooperative Extension, US Depart Agric Bull 1887:27Google Scholar
  58. Ruddy BC, Lorenz DL, Mueller DK (2006) County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001. US Geol Surv Sci Invest Rep 2006-5012:17Google Scholar
  59. Schmidt KD (1972) Nitrate in ground water of the Fresno-Clovis metropolitan area. Ground Water 10(1):50–64CrossRefGoogle Scholar
  60. Schmidt KD (1986) DBCP in ground water of the Fresno-Dinuba area, California. In: Proceedings of the Agricultural Impacts on Ground Water: National Water Well Association Conference, 11–13 August 1986, NGWA, Westerville, OH, pp 511–529Google Scholar
  61. Schmidt KD (1987) Effect of irrigation on groundwater quality in California. J Irrig Drain Eng 113(1):16–29CrossRefGoogle Scholar
  62. Spurlock F, Burow K, Dubrovsky N (2000) Chlorofluorocarbon dating of herbicide-containing well waters in Fresno and Tulare Counties, California. J Environ Qual 29(2):474–483Google Scholar
  63. US Environmental Protection Agency (1985) Drinking water criteria document for 1,2-dibromo-3-chloropropane (DBCP). US Environmental Protection Agency Document ECAO-CIN-410, USEPA, Philadelphia, PAGoogle Scholar
  64. Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65CrossRefGoogle Scholar
  65. Weissmann GS, Mount JF, Fogg GE (2002a) Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, USA. J Sediment Res 72(2):240–251Google Scholar
  66. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002b) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):16-1 to 16–13Google Scholar
  67. Wright MT, Belitz K, Johnson T (2004) Assessing the susceptibility to contamination of two aquifer systems used for public water supply in the Modesto and Fresno Metropolitan Areas, California, 2001 and 2002. US Geol Surv Sci Invest Rep 2004-5149:35Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. R. Burow
    • 1
  • N. M. Dubrovsky
    • 1
  • J. L. Shelton
    • 1
  1. 1.US Geological SurveyPlacer HallSacramentoUSA

Personalised recommendations