Advertisement

Hydrogeology Journal

, Volume 15, Issue 4, pp 679–687 | Cite as

Experiment of pumping at constant-head: an alternative possibility to the sustainable yield of a well

  • Vincenzo Piscopo
  • Gianpietro Summa
Paper

Abstract

The effects of constant-head pumping on a well over a period of 1 year have been monitored and the results used in the research of a potential alternative for the attainment of sustainable yield. Sustainable yield is frequently related to the response of drawdown during a pumping test at constant-rate, which sometimes involves a difficult choice of conceptual model to be used to analyse the pumping results. The experiment, carried out on a well that taps a fractured aquifer in Italy, recorded the aquifer’s response to pumping, compared with the response of springs. From the trends in discharge variation with time, the period and magnitude of the recharge and the stored water volume at the beginning of the depletion period can be evaluated, and the discharge rate during the same depletion period can be predicted. A sustainable yield can be derived based on the water volume extracted during the depletion period rather than on the prediction of drawdown over a long time. The experiment also highlights the stability of water quality extracted from the well, and where this criterion is important, in some cases, the constant-head pumping can represent an alternative method of groundwater exploitation.

Keywords

Groundwater management Sustainable yield Hydraulic testing Carbonate rocks 

Résumé

Les effets d’un pompage à charge constante sur un puits pendant une période de un an ont été surveillés et les résultats ont été utilisés pour la recherche d’une alternative potentielle à l’obtention d’un rendement durable. Ce dernier est fréquemment lié à la réponse du rabattement lors d’un essai de pompage à taux constant, ce qui implique parfois un choix difficile du modèle conceptuel à utiliser pour analyser les résultats de l’essai. L’expérience, réalisée en Italie sur un puits exploitant un aquifère fracturé, consistait à enregistrer la réponse de l’aquifère au pompage et à la comparer à celles des sources. A partir des tendances observées de la variation du débit dans le temps, la période et l’importance de la recharge ainsi que le volume d’eau stocké au début de la période de rabattement peuvent être évalués; le débit peut être prédit pour cette même période. Un rendement constant peut être dérivé en se basant sur le volume d’eau extrait pendant la période de rabattement plutôt que sur la prévision du rabattement sur une longue durée. L’expérience met également en évidence la stabilité de la qualité de l’eau extraite du puits, et lorsque ce critère est important, dans certains cas, le pompage à charge constante peut représenter une méthode alternative d’exploitation des eaux souterraines.

Resumen

Durante un periodo de un año, se ha monitorizado el efecto de un bombeo constante en un pozo y los resultados han sido utilizados para investigar una potencial alternativa para la consecución de un caudal sostenible. El caudal sostenible está relacionado frecuentemente con la respuesta del descenso durante un ensayo de bombeo con un caudal constante, lo que a veces implica una difícil selección del modelo conceptual que se debe utilizar para interpretar los resultados del bombeo. El experimento, llevado a cabo en un pozo que explota un acuífero fracturado en Italia, registró la respuesta del acuífero al bombeo, comparada con la respuesta de manantiales. A partir de las tendencias de la variación de la descarga con el tiempo, puede evaluarse el periodo y la cantidad de la recarga y el volumen de agua almacenado al principio del periodo de vaciado, y se puede predecir el rango de la descarga durante el mismo periodo de extracción. Se puede obtener un caudal sostenible basado en el volumen de agua extraído durante el periodo de agotamiento más que en la predicción del descenso durante un largo tiempo. El experimento también arrojó luz sobre la estabilidad de la calidad del agua extraída del pozo, y en algunos casos donde ese criterio es importante, el bombeo a nivel constante puede representar un método alternativo para la explotación de aguas subterráneas.

Notes

Acknowledgements

The authors would like to thank the Futurella SpA, Italy, in the person of Mr Nicola Del Negro, for the opportunity to conduct the fieldwork. The authors are grateful to the anonymous reviewers and the editors for their helpful and constructive comments.

References

  1. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42:12–16CrossRefGoogle Scholar
  2. Banks HO (1953) Utilization of underground storage reservoirs. Trans Am Soc Civ Eng 118:220–234Google Scholar
  3. Barlow PM, Alley WM, Meyers DN (2004) Hydrologic aspects of water sustainability and their relation to a national assessment of water availability and use. UCOWR Water Resour Update 127:76–86Google Scholar
  4. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  5. Bear J, Levin O (1967) The optimal yield of an aquifer. Int Assoc Sci Hydrol Bull 72:401–412Google Scholar
  6. Bolognini M, Celico P, Tescione M, Aquino S (1994) La produttività dei pozzi in acquiferi carbonatici molto carsificati: l’esempio dei monti Alburni (SA) [The well yield of karst aquifer systems: the case study of the Alburni Mountains (Salerno, Italy)]. Geol Roma 30:671–686Google Scholar
  7. Bonardi G, D’Argenio B, Perrone V (1988) Carta geologica dell’Appennino Meridionale (scala 1:250.000) [Geological map of the Southern Apennine (1:250,000 scale)]. In: Proceeds of the 74th Congress of the Italian Geological Society: “L’Appennino campano-lucano nel quadro geologico dell’Italia meridionale”, Sorrento, 13–17 September 1988Google Scholar
  8. Brancaccio L, Civita M, Vallario A (1973) Prime osservazioni sui problemi idrogeologici dell’Alburno (Campania) [Early remarks about the hydrogeology of the Alburni Mountains (Campania, Italy)]. Boll Soc Natural Napoli 82:13–35Google Scholar
  9. Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35(6):929CrossRefGoogle Scholar
  10. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologysts model. Ground Water 40:340–345CrossRefGoogle Scholar
  11. Celico P (1978) Schema idrogeologico dell’Appennino carbonatico centro-meridionale [Outline of the hydrogeology of the central-southern carbonate Apennine]. Mem Note Istit Geol Appl Napoli 14:1–97Google Scholar
  12. Celico P (1983) Idrogeologia dei massicci carbonatici, delle piane quaternarie e delle aree vulcaniche dell’Italia centro-meridionale (Marche e Lazio meridionali, Abruzzo, Molise e Campania) [Hydrogeology of the carbonate mountains, Quaternary plains and volcanic areas of the central-southern Italy]. Quaderni della Cassa per il Mezzogiorno, 4/2, RomaGoogle Scholar
  13. Celico P (1991) Produttività locale di alcuni acquiferi in relazione allo stato di fessurazione della roccia [Local yield of some aquifers compared with the degree of rock fracturing]. In: Atti del Convegno “Ricerca e protezione delle risorse idriche sotterranee delle aree montuose”, Brescia, 24–25 October 1991, pp 87–110Google Scholar
  14. Celico P, Pelella L, Stanzione D, Aquino S (1994) Sull’idrogeologia e l’idrogeochimica dei monti Alburni (SA) [About hydrogeology and hydrochemistry of the Alburni Mountains (Salerno, Italy)]. Geol Roma 30:687–698Google Scholar
  15. Conkling H (1946) Utilization of ground-water storage in stream system development. Trans Am Soc Civ Eng 3:275–305Google Scholar
  16. Cooper HHJ, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans AGU 267:526–534Google Scholar
  17. Domenico PA (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New YorkGoogle Scholar
  18. Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New YorkGoogle Scholar
  19. Domenico PA, Anderson DV, Case CM (1968) Optimal ground-water mining. Water Resour Res 4:247–255Google Scholar
  20. Drogue C (1972) Analyse statistiques des hydrogrammes de décrues des sources karstiques [Statistical analysis of the depletion curve of the karst springs]. J Hydrol 15:49–68CrossRefGoogle Scholar
  21. Fetter CW (1972) The concept of safe groundwater yield in coastal aquifers. Water Resour Bull 8:1173–1176Google Scholar
  22. Freeze RA (1971) Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour Res 7:347–366CrossRefGoogle Scholar
  23. Glover RE (1978) Transient ground water hydraulics. Water Resources Publications, Fort Collins, COGoogle Scholar
  24. Hantush MS (1959) Nonsteady flow to flowing wells in leaky aquifers. J Geophys Res 64:1043–1052Google Scholar
  25. Jacob CE (1947) Drawdown test to determine effective radium of artesian well. Trans Am Soc Civ Eng 112:1047–1070Google Scholar
  26. Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in a extensive aquifer. Trans AGU 33:559–569Google Scholar
  27. Kalf FRP, Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13:295–312CrossRefGoogle Scholar
  28. Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civ Eng 78:148–151Google Scholar
  29. Maillet E (1905) Essais d’hydraulique souterraine et fluviale [Essay on groundwater and stream hydraulics]. Lib. Scient. Herman, ParisGoogle Scholar
  30. Mangin A (1975) Contribution a l’étude hydrodinamique des aquifères karstiques [Contribution to the hydrodynamics of the karst aquifer systems]. Annal Spéléol 30:21–124Google Scholar
  31. Meinzer OE (1923) Outline of ground-water hydrology, with definitions. US Geol Surv Water-Supply Pap 494Google Scholar
  32. Mishra S, Guyonnet D (1992) Analysis of observation-well response during constant-head testing. Ground Water 30:523–528CrossRefGoogle Scholar
  33. Murray EC, Sami K (1998) Evaluating sustainable borehole yields for fractured rock aquifers: some South African solutions. In: Brahana et al (eds) Gambling with groundwater, AIH, St. Paul, MN, pp 25–32Google Scholar
  34. Nicotera P, de Riso R (1969) Idrogeologia del Vallo di Diano [Hydrogeology of the Vallo di Diano plain (southern Italy)]. Mem Note Istit Geol Appl Napoli 11:10–75Google Scholar
  35. Santangelo N, Santo A (1997) Endokarst processes in the Alburni massif (Campania, southern Italy): evolution of ponors and hydrogeological implications. Z Geomorph N F 41:229–246Google Scholar
  36. Sophocleous M (1997) Managing water resources systems: why “safe yield” is not sustainable. Ground Water 35(4):561CrossRefGoogle Scholar
  37. van Tonder GJ, Botha JF, Chiang WH, Kunstmann H, Xu Y (2001) Estimation of the sustainable yields of boreholes in fractured rock formation. J Hydrol 241:70–90CrossRefGoogle Scholar
  38. Wood WW (2001) Water sustainability: science or management? Ground Water 39(5):641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Dipartimento di Ecologia e Sviluppo Economico SostenibileUniversità degli Studi della TusciaViterboItaly
  2. 2.Monticchio BagniPotenzaItaly

Personalised recommendations