Advertisement

Hydrogeology Journal

, Volume 15, Issue 1, pp 5–18 | Cite as

How can remote sensing contribute in groundwater modeling?

  • P. Brunner
  • H.-J. Hendricks Franssen
  • L. Kgotlhang
  • P. Bauer-Gottwein
  • W. Kinzelbach
Paper

Abstract

Groundwater resources assessment, modeling and management are hampered considerably by a lack of data, especially in semi-arid and arid environments with a weak observation infrastructure. Usually, only a limited number of point measurements are available, while groundwater models need spatial and temporal distributions of input and calibration data. If such data are not available, models cannot play their proper role in decision support as they are notoriously underdetermined and uncertain. Recent developments in remote sensing have opened new sources for distributed spatial data. As the relevant entities such as water fluxes, heads or transmissivities cannot be observed directly by remote sensing, ways have to be found to link the observable quantities to input data required by the model. An overview of the possibilities for employing remote-sensing observations in groundwater modeling is given, supported by examples in Botswana and China. The main possibilities are: (1) use of remote-sensing data to create some of the spatially distributed input parameter sets for a model, and (2) constraining of models during calibration by spatially distributed data derived from remote sensing. In both, models can be improved conceptually and quantitatively.

Keywords

Remote sensing Numerical modeling Geophysics Spatial data analysis Model calibration 

Résumé

L’évaluation, la modélisation et la gestion des ressources d’eau souterraine sont considérablement entravées par un manque de données, particulièrement dans les régions semi-arides et arides possédant peu d’infrastructures d’observation. Généralement, seul un nombre limité de points de mesure sont disponibles, alors que les modèles hydrogéologiques demandent des distributions spatiales et temporelles de données d’entrée et de calibration. Si de telles données ne sont pas disponibles, les modèles ne peuvent pas jouer leur rôle d’appui à la décision puisqu’ils sont notoirement de mauvaise résolution et incertains. De récentes avancées en télédétection constituent de nouvelles sources pour les données spatialement distribuées. Comme les entités utiles telles que les flux et les niveaux d’eau ou les transmissivités ne peuvent pas être observées directement par télédétection, il convient de trouver des moyens de relier les quantités observables aux données d’entrée nécessaires aux modèles. A travers des exemples au Botswana et en Chine, un aperçu des possibilités d’utilisation des observations issues de la télédétection en modélisation hydrogéologique est présenté. Les principales possibilités sont: (1) l’utilisation de données de télédétection pour créer une partie des données d’entrée spatialement distribuées d’un modèle, et (2) la contrainte des modèles lors de la calibration avec des données spatialement distribuées dérivées de la télédétection. Dans les deux cas, les modèles peuvent être conceptuellement et quantitativement améliorés.

Resumen

La evaluación, modelizado, y gestión de recursos de agua subterránea, se dificulta considerablemente por la falta de datos, especialmente en ambientes áridos y semi-áridos donde existe una infraestructura débil de vigilancia. En esto ambientes normalmente solo se cuenta con un número limitado de mediciones puntuales mientras que los modelos de agua subterránea necesitan distribuciones temporales y espaciales de datos de entrada y calibración. Si estos datos no están disponibles los modelos no pueden jugar su rol apropiado en el apoyo de decisiones ya que en estas circunstancias son bastante inciertos e indeterminados. Los desarrollos recientes en sensores remotos han abierto nuevas fuentes para datos con distribución espacial. Debido a que las entidades relevantes tal como flujos de agua, presiones o transmisividades no pueden observarse directamente mediante sensores remotos, tienen que encontrarse maneras para vincular las cantidades observables a datos de entrada que requiere el modelo. Se proporciona una revisión de las posibilidades de utilizar observaciones de sensores remotos en los modelos de agua subterránea apoyándose en ejemplos de Bostwana y China. Las dos posibilidades son: (1) uso de datos de sensores remotos para crear algunos de los parámetros de entrada distribuidos espacialmente para un modelo, y (2) restricción de modelos durante la calibración mediante datos distribuidos espacialmente obtenidos de sensores remotos. Para ambas posibilidades los modelos pueden mejorarse conceptual y cuantitativamente.

Notes

Acknowledgements

This work was financially supported by the Swiss National Science Foundation (SNF) under project no. 200021-105384. We are grateful for the valuable comments of the editor and of two anonymous reviewers.

References

  1. Almeida AS, Frykman P (1994) Geostatistical modeling of Chalk properties in the Dan Field, Danish North Sea. In: JM Yarus, RL Chambers (eds) Stochastic modeling and geostatistics: AAPG computer applications in geology, no. 3. AAPG, Tulsa, OKGoogle Scholar
  2. Amalvict M, Hinderer J, Makinen J, Rosat S, Rogister Y (2004) Long-term and seasonal gravity changes at the Strasbourg station and their relation to crustal deformation and hydrology. J Geodyn 38(3–5):343–353CrossRefGoogle Scholar
  3. Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geophys Res Lett 32:L01402. DOI 10.1029/2004GL020948
  4. Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:L18405. DOI 10.1029/2005GL023574
  5. Barnes CJ, Allison GB (1988) Tracing of water-movement in the unsaturated zone using stable isotopes of hydrogen and oxygen. J Hydrol 100(1–3):143–176CrossRefGoogle Scholar
  6. Bastiaanssen W, Menenti M, Feddes RA, Holtslag AAM (1998a) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol 213(1–4):198–212CrossRefGoogle Scholar
  7. Bastiaanssen W, Pelgrum H, J, Wang Ma Y, Moreno JF, Roerink GJ, van der Wal T (1998b) A remote sensing surface energy balance algorithm for land (SEBAL). 2. Validation. J Hydrol 213(1–4):213–229CrossRefGoogle Scholar
  8. Bauer P, Gumbricht T, Kinzelbach W (2006a) A regional coupled surface water/ground water model of the Okavango Delta, Botswana. Water Res Res 42:W04403. DOI 10.1029/2005WR004234
  9. Bauer P, Held R, Zimmermann S, Linn F, W Kinzelbach (2006b) Coupled flow and salinity transport modelling in semi-arid environments: the Shashe River Valley, Botswana. J Hydrol 316(1–4):163–183CrossRefGoogle Scholar
  10. Becker MW (2006) Potential for satellite remote sensing of ground water. Ground Water 44(2):306–318CrossRefGoogle Scholar
  11. Ben-Dor E, Goldshleger N, Braun O, Kindel B, Goetz AFH, Bonfil D, Margalit N, Binaymini Y, Karnieli A, Agassi M (2004) Monitoring infiltration rates in semiarid soils using airborne hyperspectral technology. Int J Remote Sens 25(13):2607–2624CrossRefGoogle Scholar
  12. Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32 (16):L16401Google Scholar
  13. Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site. Phys Earth Planet Inter 106(3–4):353–369CrossRefGoogle Scholar
  14. Brunner P (2005) Sustainable Agriculture in the Yanqi Basin, China, PhD Thesis, ETH Zurich, Switzerland, http://www.e-collection.ethbib.ethz.ch/cgi-bin/show.pl?type=diss&nr=16210. Cited 29 October 2006
  15. Brunner P, Bauer P, Eugster M, Kinzelbach W (2004) Using remote sensing to regionalize local precipitation recharge rates obtained from the chloride method. J Hydrol 294(4):241–250CrossRefGoogle Scholar
  16. Brunner P, Li HT, Li WP, Kinzelbach W (2006) Generating soil electrical conductivity maps at regional level by integrating measurements on the ground and remote sensing data. Int J Remote Sens (in press)Google Scholar
  17. Bufton JL, Garvin JB, Cavanaugh JF, Ramosizquierro L, Clem TD, Krabill WB (1991) Airborne LIDAR for profiling of surface topography. Opt Eng 30(1):72–78CrossRefGoogle Scholar
  18. Capilla JE, Rodrigo J, Gomez-Hernandez JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31(7):907–927CrossRefGoogle Scholar
  19. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under transient and steady state conditions. 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227Google Scholar
  20. Chabrillat S, Goetz AFH, Krosley L, Olsen HW (2002) Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote Sens Environ 82(2–3):431–445CrossRefGoogle Scholar
  21. Chang CP, Chang TY, Wang CT, Kuo CH, Chen KS (2004) Land-surface deformation corresponding to seasonal ground-water fluctuation, determined by SAR interferometry in SW Taiwan. Math Comput Simul 67(4–5):351–359CrossRefGoogle Scholar
  22. Collier CG (2002) Developments in radar and remote-sensing methods for measuring and forecasting rainfall. Philos Trans Roy Soc London A 360:1345–1361Google Scholar
  23. Cook SE, Corner RJ, Groves PR, Grealish GJ (1996) Use of airborne gamma radiometric data for soil mapping. Aus J Soil Res 34(1):183–194CrossRefGoogle Scholar
  24. Danielsen JE, Auken E, Jorgensen F, Sondergaard V, Sorensen KI (2003) The application of the transient, electromagnetic method in hydrogeophysical surveys. J Appl Geophys 53:181–198CrossRefGoogle Scholar
  25. Doll WE, Nyquist JE, Beard LP, Gamey TJ (2000) Airborne geophysical surveying for hazardous waste site characterization on the Oak Ridge Reservation, Tennessee. Geophysics 65:1372–1387CrossRefGoogle Scholar
  26. Droogers P, Bastiaanssen W (2002) Irrigation performance using hydrological and remote sensing modeling. J Irrig Drain Eng-ASCE 128(1):11–18CrossRefGoogle Scholar
  27. DWA (2000) Groundwater resources evaluation Kanye, Ramonnedi and Moshaneng Areas, TB10/3/9/95–96 1), Department of Water Affairs, Gabaronne, BotswanaGoogle Scholar
  28. DWA (2004) Maun Groundwater Development Project Phase 2, TB 10/3/5/2000–2001, Department of Water Affairs, Gabaronne, Botswana, TB 10/3/5/2000–2001Google Scholar
  29. DWA (2006) Kanye emergency works, water supply project, TB 10/3/73/2001–2002, Department of Water Affairs, Gabaronne, BotswanaGoogle Scholar
  30. European Space Agency (2005) River and Lake. http://www.earth.esa.int/riverandlake/. Cited 29 October 2006
  31. Fensholt R, Sandholt I, Stisen S, Tucker C (2006) Analysing NDVI for the African continent using the geostationary meteosat second generation SEVIRI sensor. Remote Sens Environ 101(2):212–229CrossRefGoogle Scholar
  32. FEWS NET (2006) Famine Early Warning Systems Network, http://www.fews.net/. Cited 29 October 2006
  33. Gehrels J, Van der Lee J (1990) Rainfall and recharge: a critical analysis of the atmosphere-soil-groundwater relationship in Kanye, Semi-arid Botswana. Internal Report, Free University of Amsterdam, The NetherlandsGoogle Scholar
  34. Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 203(1–4):162–174Google Scholar
  35. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, OxfordGoogle Scholar
  36. Gumbricht T, McCarthy TS, Bauer P (2005) The micro-topography of the wetlands of the Okavango Delta, Botswana. Earth Surf Processes Landf 30(1):27–39CrossRefGoogle Scholar
  37. Hendricks Franssen HJWM (2001) Inverse stochastic modelling of groundwater flow and mass transport. PhD Thesis, Technical University of Valencia, SpainGoogle Scholar
  38. Hendricks Franssen HJWM, Brunner P, Kgothlang L, Kinzelbach W (2006) Inclusion of remote sensing information to improve groundwater flow modeling in the Chobe region. In: MFP Bierkens, JC Gehrels, K Kovar (eds) Calibration and reliability in groundwater modeling: from uncertainty to decision making. IAHS Publication 304, IAHS, Wallingford, UK, pp 31–37Google Scholar
  39. Herman A, Kumar VB, Arkin PA, Kousky JV (1997) Objectively determined 10-day African rainfall estimates created for famine early warning systems. Int J Remote Sens 18(10):2147–2159CrossRefGoogle Scholar
  40. Hoffmann J, Zebker HA, Galloway DL, Amelung F (2001) Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resour Res 37(6):1551–1566CrossRefGoogle Scholar
  41. Jekeli C, Dumrongchai P (2003) On monitoring a vertical datum with satellite altimetry and water-level gauge data on large lakes. J Geod 77(7–8):447–453CrossRefGoogle Scholar
  42. Jorgensen F, Lykke-Andersen, H Sandersen PBE, Auken E, Normark E (2003a) Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. J Appl Geophys 53:215–228CrossRefGoogle Scholar
  43. Jorgensen F, Sandersen PBE, Auken E (2003b) Imaging buried Quaternary valleys using the transient electromagnetic method. J Appl Geophys 53:199–213CrossRefGoogle Scholar
  44. Kaab A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogramm Remote Sens 57(1–2):39–52CrossRefGoogle Scholar
  45. Kemna A, Vanderborght J, Kulessa B, Vereecken H (2002) Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J Hydrol 267:125–146CrossRefGoogle Scholar
  46. Klump S, Sanesi M, Hofer M, Kipfer R (2004) Using environmental tracers to develop a new conceptual groundwater model in southern Botswana. Geochim Cosmochim Acta 68(11):A465–A465, Suppl. SGoogle Scholar
  47. LaBrecque JL, Ghidella ME (1997) Bathymetry, depth to magnetic basement, and sediment thickness estimates from aerogeophysical data over the western Weddell Basin. J Geophys Res 102:7929–7945CrossRefGoogle Scholar
  48. Lattmann LH (1958) Techniques of mapping geologic fracture traces and lineaments on aerial photographs. Photogr Eng 24:568–576Google Scholar
  49. LaVenue AM, RamaRao BS, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 2. Application. Water Resour Res 31(3):495–516CrossRefGoogle Scholar
  50. Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. J Hydrol 243(1–2):43–54CrossRefGoogle Scholar
  51. Leone AP, Escadafal R (2001) Statistical analysis of soil colour and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem). Int J Remote Sens 22(12):2311–2328CrossRefGoogle Scholar
  52. Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005) Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30(1–3):69–79Google Scholar
  53. Lubczynski MW, Gurwin J (2005) Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes: Sardon study case, Spain. J Hydrol 306(1–4):71–96CrossRefGoogle Scholar
  54. Madsen SN, Zebker HA, Martin, J (1993) Topographic mapping using radar interferometry-processing techniques. IEEE Trans Geosci Remote Sens 31(1):246–256CrossRefGoogle Scholar
  55. McCarthy J, Gumbricht T, McCarthy TS, Frost PE, Wessels K, Seidel F (2003) Flooding patterns of the Okavango Wetland in Botswana between 1972 and 2000. Ambio 32(7):453–457CrossRefGoogle Scholar
  56. Meijerink AMJ (1996) Remote sensing applications to hydrology: groundwater. Hydrol Sci J 4:549–561CrossRefGoogle Scholar
  57. Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85(1):1–20CrossRefGoogle Scholar
  58. Microwave and Radar Institute (2006) TanDEM-X: a new high resolution interferometric SAR mission. http://www.dlr.de/hr/tdmx. Cited 29 October 2006
  59. MFDP (2003) National Development Plan 9: 2003/04-2008/09, Part II, Ministry of Finance and Development Planning, Gabaronne, Botswana, page 56Google Scholar
  60. Mushayandebvu MF, van Driel P, Reid AB, Fairhead JD (2001) Magnetic source parameters of two-dimensional structures using extended Euler deconvolution. Geophysics 66(3):814–823CrossRefGoogle Scholar
  61. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models. J Geod 79(10–11):573–585CrossRefGoogle Scholar
  62. Oliver DS, Cunha LB, Reynolds AC (1997) Markov Chain Monte Carlo methods for conditioning a permeability field to pressure data. Math Geol 29(1):61–91Google Scholar
  63. Paine JG, Collins EW (2003) Applying AEM induction in groundwater salinization and resource studies, west Texas. SAGEEP, Denver, CO, pp 722–738Google Scholar
  64. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432CrossRefGoogle Scholar
  65. Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission: a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262CrossRefGoogle Scholar
  66. Rainey MP, Tyler AN, Gilvear DJ, Bryant RG, McDonald P (2003) Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing. Remote Sens Environ 86(4):480–490CrossRefGoogle Scholar
  67. Reid AB, Allsop JM, Granser AJ, Millet AJ, Somerton IW (1990) Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 55(1):80–91CrossRefGoogle Scholar
  68. Rodriguez E, Morris CS, Belz JE, Chapin EC, Martin JM, Daffer W, Hensley S (2005) An assessment of the SRTM topographic products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
  69. Roerink GJ, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B-Hydrol Oceans Atmos 25(2):147–157CrossRefGoogle Scholar
  70. Roshier DA, Rumbachs RM (2004) Broad-scale mapping of temporary wetlands in arid Australia. J Arid Environ 56(2):249–263CrossRefGoogle Scholar
  71. Sandholt I, Andersen HS (1993) Derivation of actual evapotranspiration in the Senegalese Sahel, using NOAA-AVHRR data during the 1987 growing season. Remote Sens Environ 46(2):164–172CrossRefGoogle Scholar
  72. Sattel D, Kgotlhang L (2004) Groundwater exploration with AEM in the Boteti Area, Botswana. Explor Geophys 35:147–156Google Scholar
  73. Shepherd KD, Walsh MG (2002) Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J 66(3):988–998CrossRefGoogle Scholar
  74. Slater JA, Garvey G, Johnston C, Haase J, Heady B, Kroenung G, Little J (2006) The SRTM data “finishing” process and products. Photogramm Eng Remote Sens 72(3):237–247Google Scholar
  75. Tam VT, De Smedt F, Batelaan O, Dassargues A (2004) Study on the relationship between lineaments and borehole specific capacity in a fractured and karstified limestone area in Vietnam. Hydrogeol J 12(6):662–673CrossRefGoogle Scholar
  76. Thompson DT (1982) EULDPH: a new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31–37CrossRefGoogle Scholar
  77. Valstar JR, McLaughlin DB, Stroet CBMT (2004) A representer-based inverse method for groundwater flow and transport applications. Water Resour Res 40(5):W05116Google Scholar
  78. Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observations. J Geophys Res-Solid Earth Planets 91(B5):4993–4999CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Brunner
    • 1
  • H.-J. Hendricks Franssen
    • 1
  • L. Kgotlhang
    • 1
  • P. Bauer-Gottwein
    • 2
  • W. Kinzelbach
    • 1
  1. 1.Institute of Environmental EngineeringETH ZurichZurichSwitzerland
  2. 2.Institute of Environment and ResourcesTechnical University of DenmarkLyngbyDenmark

Personalised recommendations