Advertisement

Hydrogeology Journal

, Volume 15, Issue 1, pp 47–69 | Cite as

Development of a hydrogeological model description of intrusive rock at different investigation scales: an example from south-eastern Sweden

  • Ingvar Rhén
  • Hans Thunehed
  • Carl-Axel Triumf
  • Sven Follin
  • Lee Hartley
  • Jan Hermansson
  • Carl-Henric Wahlgren
Paper

Abstract

Site investigations at Oskarshamn, south-eastern Sweden, to determine a suitable repository for spent nuclear fuel, are dependent on hydrogeological modelling, and one part of the modelling rests upon a deformation zone model. One main objective of the investigations, to locate and characterize major and minor deformation zones in the Simpevarp and Laxemar areas, has been largely met with the use of remote sensing and ground geophysics data. Most major deformation zones in the bedrock were initially identified as lineaments using digital elevation models and helicopter-borne geophysics data. Supplementary information was received from a light detection and ranging (LIDAR) survey and dense ground geophysics surveys, providing data also for minor deformation zones. However, surface investigations are needed to explore and confirm the geological and hydrogeological character of the lineaments identified by remote sensing to indicate that a lineament probably represents a deformation zone. The approach, involving two- and three-dimensional planar models to create a site descriptive model of geology and hydrogeology, may be suitable for other parts of the world with a similar geological environment of crystalline bedrock.

Keywords

Crystalline rocks Geophysical methods Hydraulic properties Remote sensing Sweden 

Résumé

Les études menées sur le site d’Oskarshamn au Sud-Est de la Suède pour déterminer un site convenable de stockage de combustible nucléaire usagé, sont dépendantes de la modélisation hydrogéologique, et une part de cette modélisation repose sur un modèle de la zone de déformation. Un objectif principal de ces études, la localisation et la caractérisation des zones de déformations majeures et mineures dans les zones de Simpevarp et Laxemar, a été surtout atteint grâce aux données de télédétection et à la géophysique. La plupart des zones de déformations majeures dans le socle ont initialement été identifiées en repérant les linéaments au moyen des modèles numériques de terrain et des données de géophysique embarquée sur hélicoptère. Des suppléments d’information ont été apportés par la détection de type « LIDAR » (en anglais: light detection and ranging) et des études géophysiques denses, apportant aussi des données pour les zones de faible déformation. Cependant, les études de la surface sont nécessaires pour explorer et confirmer les caractères géologiques et hydrogéologiques des linéaments identifiés par télédétection, et leur liaison probable avec une zone de déformation. L’approche, impliquant des modèles horizontaux à deux et trois dimensions pour recréer un modèle descriptif du site au regard de la géologie et de l’hydrogéologie, pourrait être applicable à d’autres environnements géologiques similaires présentant un socle cristallin, ailleurs dans le monde.

Resumen

Las investigaciones del sitio en Oskarshamn al sureste de Suecia para determinar un depósito conveniente para combustible nuclear gastado son dependientes de los modelos hidrogeológicos y una parte de este modelo depende del modelo de la zona de deformación. Uno de los objetivos principales de las investigaciones, para localizar y caracterizar zonas de deformación mayores y menores en las áreas Simpevarp y Laxemar, se ha alcanzado en gran parte con el uso de sensores remotos y datos geofísicos del terreno. La mayoría de zonas de deformación principales en el macizo rocoso se identificaron inicialmente como lineamientos usando modelos de elevación digital y datos de geofísica generados con vuelos de helicóptero. Se recibió información suplementaria de un levantamiento de detección de luz y rangos (LIDAR) y levantamientos geofísicos densos del terreno los cuales también aportaron datos para zonas menores de deformación. Sin embargo, se necesitan investigaciones superficiales para explorar y confirmar el tipo hidrogeológico y geológico de los lineamientos identificados mediante sensores remotos para indicar que un lineamiento probablemente representa una zona de deformación. El enfoque que involucra modelos planares en dos y tres dimensiones para crear un modelo descriptivo de la geología e hidrogeología del sitio puede ser conveniente para otras partes del mundo con un ambiente geológico similar de macizo rocoso cristalino.

Notes

Acknowledgements

Svensk Kärnbränslehantering AB (Swedish Nuclear Fuel and Waste Management Co., SKB) is kindly acknowledged for their funding of this article. The reviewers of this article are also acknowledged for good and constructive comments.

References

  1. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Petrol Eng 146:54–62Google Scholar
  2. Bentley Systems (2002) Microstation, Version v8, Bentley Systems, Inc., Exton, PAGoogle Scholar
  3. Cosma C, Heikkinen P (1996) Seismic investigations for the final disposal of spent nuclear fuel in Finland. J Appl Geophys 35:151–157CrossRefGoogle Scholar
  4. Darcel C, Bour O, Davy P, de Dreuzy JR (2003) Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resour Res 39(10):2003CrossRefGoogle Scholar
  5. de Dreuzy JR, Darcel C, Davy P, Bour O (2004) Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res 40, W01502 DOI  10.1029/2003WR002260
  6. Elhammer A, Sandkvist Å (2005) Oskarshamn site investigation. Detailed Marine Geological survey of the sea bottom outside Simpevarp. SKB P-05-35, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  7. ENRESA (1996) El Berrocal project: characterization and validation of natural radionuclide migration processes under real conditions on the fissured granitic environment. Topical reports, vol I, Geological studies, ENRESA, MadridGoogle Scholar
  8. Faybishenko B, Witherspoon PA, Benson SM (eds) (2000) Dynamics of fluids in fractured rock, Geophysical Monograph 122, American Geophysical Union, Washington, DCGoogle Scholar
  9. Faybishenko B, Witherspoon PA, Gale J (eds) (2005) Dynamics of fluids and transport in fractured rock, Geophysical Monograph 162, American Geophysical Union, Washington, DCGoogle Scholar
  10. Follin S, Stigsson M, Svensson U (2006) Hydrogeological DFN modelling using structural and hydraulic data from KLX04, Preliminary site description, Laxemar subarea, version 1.2 SKB R-06-24, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  11. Gustafsson J, Gustafsson C (2006) Oskarshamn site investigation. RAMAC and BIPS logging in boreholes KLX09, HLX36 and HLX37 and deviation logging in HLX36 and HLX37. SKB P-06-48, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  12. Haneberg WC, Mozley PS, Moore JC, Goodwin LB (eds) (1999) Faults and subsurface fluid flow in the shallow crust, Geophysical Monograph 113, American Geophysical Union, Washington, DCGoogle Scholar
  13. Hartley L, Hunter F, Jackson P, McCarthy R, Gylling B, Marsic N (2006) Regional hydrogeological simulations: numerical modelling using ConnectFlow. Preliminary site description, Laxemar subarea, version 1.2. SKB R-06-23, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  14. Henkel H, Guzmán M (1977) Magnetic features of fracture zones. Geoexploration 15(3):173–181CrossRefGoogle Scholar
  15. Hermanson J, Forssberg O, Fox A, La Pointe P (2005) Statistical model of fractures and deformation zones. Preliminary site description, Laxemar subarea, version 1.2, SKB R-05-45 Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  16. Hicks T, Wickham S, Bruel D, Jeong W-C, Connolly P, Gölke M, Podlachikov Y, Rodrigues N (2000) Modelling the influence of fault zone heterogeneity and the hydrodynamics of fault movement in hydrogeological systems, EUR 10134 EN, European Commission, BrusselsGoogle Scholar
  17. Juhlin C, Bergman B, Palm H, Tryggvason A, (2004a) Oskarshamn site investigation. Reflection seismic studies on Ävrö and Simpevarpshalvön, 2003. SKB P-04-52. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  18. Juhlin C, Bergman B, Palm H, (2004b) Oskarshamn site investigation. Reflection seismic studies performed in the Laxemar area during 2004. SKB P-04-215. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  19. La Point P (2002) Derivation of parent fracture populations statistics from trace length measurements of fractal fracture populations. Int J Rock Mech Min Sci 39:381–388CrossRefGoogle Scholar
  20. La Pointe PR, Hudson JA (1985) Characterisation and interpretation of rock mass joint patterns”. Geol Soc Am Spec Pap 199Google Scholar
  21. Lindborg T (ed) (2006) Description of surface systems, Preliminary site description Laxemar subarea, version 1.2. SKB R-06-11, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  22. Lindqvist G (2004) Oskarshamn site investigation: refraction seismic measurements in Laxemar. SKB P-04-134. Svensk Kärnbränslehantering, Stockholm, Sweden ABGoogle Scholar
  23. Mattsson H, Keisu M (2005) Oskarshamn site investigation. Interpretation of geophysical borehole measurements from KLX07A, KLX07B, HLX20, HLX32, HLX34 and HLX35. SKB P-05-259. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  24. Mattsson H, Thunehed H, Triumf C-A (2005) Compilation of petrophysical data from rock sampling and in situ gamma-ray spectrometry measurements, Stage 2-2004 (including 2002). SKB P-04-294. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  25. McEwen T, Äikäs T (2000) The site selection process for a spent fuel repository in Finland. Summary report. Posiva Oy 2000-15, Posiva Oy, Olkiluoto, FinlandGoogle Scholar
  26. Min K-B, Jing L, Stephansson O (2004) Determine the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to field data from Sellafield, UK. Hydrogeol J 12:497–510CrossRefGoogle Scholar
  27. Munier R, Stenberg L, Stanfors R, Milnes AG, Hermanson J, Triumf C-A (2003) Geological site descriptive model: a strategy for the model development during site investigations. SKB R-03-07. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  28. National Research Council Committee on Fracture Characterization and Fluid Flow (1996) Rock fractures and fluid flow: contemparary understanding and applications, National Academy Press, Washington, DCGoogle Scholar
  29. Nilsson KP, Bergman T, Eliasson T (2004) Oskarshamn site investigation. Bedrock mapping 2004, Laxemar subarea and regional model area. Outcrop data and description of rock types. SKB P-04-221. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  30. Nyborg M (2005) Oskarshamn site investigation. Aerial photography and airborne laser scanning Laxemar-Simpevarp: the 2005 campaign. SKB P-05-223. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  31. Nyborg M, Berglund J, Triumf C-A (2006) Detection of lineaments using detailed airborne laser scanning measurements in the SKB Site Investigations at the Laxemar-Simpevarp area in south-eastern Sweden. Hydrogeol J, this issueGoogle Scholar
  32. Paananen M, Paulamäki S, Gehör S, Kärki A, Front K, Aaltonen I, Ahokas T, Kemppainen K, Mattila J, Wikström L (2006) Geological Model of the ONKALO Area, Version 0, Working Report 2006-13. Posiva Oy, Olkiluoto, FinlandGoogle Scholar
  33. Palacky GJ, Kadekaru K (1979) Effect of tropical weathering on electrical and electromagnetic measurements. Geophysics 44:69–88CrossRefGoogle Scholar
  34. Rhén I, Forsmark T, Forssman I, Zetterlund M (2006) Evaluation of hydrogeological properties for Hydraulic Conductor Domains (HCD) and Hydraulic Rock Domains (HRD) Laxemar subarea, version 1.2, SKB R-06-22, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  35. Rönning HJS, Kihle O, Mogaard JO, Walker P (2003) Simpevarp site investigation: helicopter borne geophysics at Simpevarp, Oskarshamn, Sweden. SKB P-03-25, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  36. Sjögren B (1984) Shallow refraction seismics. Chapman and Hall, LondonGoogle Scholar
  37. SKB (2000) Geoscientific programme for investigation and evaluation of sites for the deep repository. SKB TR-00-20. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  38. SKB (2002) Simpevarp, site descriptive model version 0. SKB R-02-35. Svensk Kränbränslehantering AB, Stockholm, SwedenGoogle Scholar
  39. SKB (2004) Preliminary site description. Simpevarp area, version 1.1. SKB R-04-25. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  40. SKB (2005) Preliminary site description. Simpevarp subarea, version 1.2. SKB R-05-08. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  41. SKB (2006a) Preliminary site description. Laxemar subarea, version 1.2. SKB R-06-10. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  42. SKB (2006b) Hydrogeochemical evaluation. Preliminary site description, Laxemar subarea, version 1.2. SKB R-06-12. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  43. Stesky RM (1986) Electrical conductivity of brine-saturated fractured rock. Geophysics 51:1585–1593CrossRefGoogle Scholar
  44. Thunehed H, Pitkänen T (2006) Oskarshamn site investigation. Transient electromagnetic soundings at Laxemar and the regional surroundings: estimation of depth to saline groundwater. SKB P-06-21. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  45. Thunehed H, Triumf C-A (2005) Oskarshamn site investigation. Detailed ground geophysical survey at Laxemar. Magnetic total field and resistivity. SKB P-05-188. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  46. Thunehed H, Triumf C-A, Pitkänen T, (2004) Oskarshamn site investigation: geophysical profile measurements over interpreted lineaments in the Laxemar area. SKB P-04-211. Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  47. Triumf C-A (2003) Identification of lineaments in the Simpevarp area by the interpretation of topographical data. Oskarshamn site investigation. SKB P-03-99, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  48. Triumf C-A, Thunehed H, Kero L, Persson L (2003) Oskarshamn site investigation: interpretation of airborne geophysical survey data. Helicopterborne survey data of gamma ray spectrometry, magnetics and EM from 2002 and fixed wing airborne survey data of the VLF-field from 1986. SKB P-03-100, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar
  49. Wiklund S (2002) Digitala ortofoton och höjdmodeller. Redovisning av metodik för platsundersökningsområdena Oskarshamn och Forsmark samt förstudieområdet Tierp Norra (Digital ortho-photos and elevation models. Reporting of methodology for site investigations areas Oskarshamn and Forsmark as well as pilot study area Tierp). SKB P-02-02, Svensk Kärnbränslehantering AB, Stockholm, SwedenGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ingvar Rhén
    • 1
  • Hans Thunehed
    • 2
  • Carl-Axel Triumf
    • 2
  • Sven Follin
    • 3
  • Lee Hartley
    • 4
  • Jan Hermansson
    • 5
  • Carl-Henric Wahlgren
    • 6
  1. 1.SWECO VIAKGothenburgSweden
  2. 2.GeoVista ABLuleåSweden
  3. 3.SF GeoLogic ABTäbySweden
  4. 4.Serco AssuranceDidcotUK
  5. 5.Golder Associates ABStockholmSweden
  6. 6.Geological Survey of SwedenUppsalaSweden

Personalised recommendations