Hydrogeology Journal

, Volume 15, Issue 3, pp 495–513

Groundwater and surface-water interactions in a confined alluvial aquifer between two rivers: effects of groundwater flow dynamics on high iron anomaly

  • Kitchakarn Promma
  • Chunmiao Zheng
  • Pongpor Asnachinda
Paper

Abstract

In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.

Keywords

Groundwater and surface-water interactions Groundwater flow Hydrogeochemical evolution Iron Thailand 

Résumé

Dans un aquifère alluvial captif situé entre deux rivières, des zones discrètes présentant une anomalie élevée en concentrations d’espèces redox comme le Fer, sont supposées être le résultat de la dynamique de l’écoulement des eaux souterraines plutôt que le résultat d’une évolution chimique le long d’une ligne d’écoulement continue. Cette nouvelle hypothèse a été confirmée sur un site d’étude situé entre les rivières Nan et Yom à Phitsanulok, en Thaïlande, en analysant les concentrations des espèces redox en comparaison avec le schéma de l’écoulement dynamique des eaux souterraines. L’incision de la rivière dans l’aquifère alluvial captif et les niveaux de la rivière variant saisonnièrement engendrent des trajectoires tronquées. La dynamique de l’écoulement des eaux souterraines entre les deux rivières présente quatre phases cycliques dont : l’écoulement de l’aquifère vers les deux rivières, l’écoulement direct d’une rivière vers l’autre, la recharge de l’aquifère à partir des deux rivières, et l’écoulement inverse rivière-à-rivière. La direction résultante de l’écoulement des eaux souterraines possède une allure en zigzag et reste globalement parallèle à la rivière. L’anomalie élevée en Fer apparaît en zones discrètes dans les aires de transition de l’aquifère alluvial captif, du fait de la recharge latérale à partir des rivières pénétrant seulement sur des dizaines de mètres dans l’aquifère. L’anomalie élevée en Fer, qui est pratiquement constante dans l’espace et dans le temps, est le résultat d’interactions entre l’eau souterraine et l’eau de surface et la dynamique de l’écoulement des eaux souterraines associée.

Resumen

En un acuífero aluvial confinado localizado entre dos ríos, existen zonas discretas de concentraciones anormalmente altas de especies redox, como el hierro, que se piensa son el resultado de la dinámica de flujo del agua subterránea más que el resultado de la evolución química a lo largo de líneas de flujo continuas. Esta nueva hipótesis se ha confirmado en un área de estudio localizado entre los ríos Nan y Yome Phitsanulok, Tailandia, mediante el análisis de las concentraciones de especies redox en comparación con la dinámica de las líneas de flujo del agua subterránea. La incisión del río en el acuífero aluvial confinado y las variaciones estacionales de las alturas del río dan lugar al truncamiento de las líneas de flujo. La dinámica del flujo entre los dos ríos tiene cuatro fases cíclicas, que incluyen: la descarga del acuífero en ambos ríos, el flujo directo de un río hacia el otro, la recarga hacia el acuífero desde ambos ríos y el flujo revertido entre un río y otro. Las direcciones de las líneas de flujo resultantes tienen un diseño en zigzag y su dirección general es casi paralela a la dirección del río. El contenido anormalmente alto en hierro aparece como una zona discreta en las áreas de transición del acuífero aluvial confinado porque la recarga lateral desde los ríos penetra en el acuífero solamente unos diez metros. La anomalía de altos contenidos en hierro, que es casi constante en el espacio y en el tiempo, es un resultado de la interacción entre el agua subterránea y el agua superficial y está relacionada con la dinámica de flujo del agua subterránea.

References

  1. American Public Health Association, American Water Works Association, Water Pollution Control Federation (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington DCGoogle Scholar
  2. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, AmsterdamGoogle Scholar
  3. Back W (1966) Hydrochemical facies and groundwater flow patterns in northern part of Atlantic Coastal Plain. US Geol Surv Prof Pap 498-AGoogle Scholar
  4. Back W, Barnes I (1965) Relation of electrochemical potentials and iron content to groundwater flow patterns. US Geol Surv Prof Pap 498-CGoogle Scholar
  5. Barcelona MJ, Holm TR (1991) Oxidation-reduction capacities of aquifer solids. Environ Sci Technol 25:1565–1572CrossRefGoogle Scholar
  6. Barcelona MJ, Holm TR, Schock MR, George GK (1989) Spatial and temporal gradients in aquifer oxidation-reduction conditions. Water Resour Res 25:991–1003Google Scholar
  7. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365Google Scholar
  8. Bourg CM, Bertin C (1993) Biochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666CrossRefGoogle Scholar
  9. Bouwer H, Maddock T III (1997) Making sense of the interaction between groundwater and streamflow: lessons from watermasters and adjudicators. Rivers 6:19–31Google Scholar
  10. Brown CJ, Schoonen MAA, Candela JL (2000) Geochemical modeling of iron, sulfur, oxygen and carbon in a coastal plain aquifer. J Hydrol 237:147–168CrossRefGoogle Scholar
  11. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33CrossRefGoogle Scholar
  12. Champ DC, Gulens J, Jackson RE (1979) Oxidation-reduction sequences in groundwater systems. Can J Earth Sci 16:1466–1472Google Scholar
  13. Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30:29–36CrossRefGoogle Scholar
  14. Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Geochim Cosmochim Acta 8:22–48, 137–170, 198–212Google Scholar
  15. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27:526–534Google Scholar
  16. Dahm CN, Grimm NB, Marmonier P, Valett MH, Vervier P (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshw Biol 40:427–451CrossRefGoogle Scholar
  17. Department of Mineral Resources (2001) Hydrogeological map of Phitsanulok, Thailand: scale 1:100,000. Department of Mineral Resources, BangkokGoogle Scholar
  18. Dousson C, Poitevin G, Ledoux E, Detay M (1997) River bank filtration: modeling of the changes in water chemistry with emphasis on nitrogen species. J Contam Hydrol 25:129–156CrossRefGoogle Scholar
  19. Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL, Bath AH, Morgan-Jones M, Andrews JN (1987) Baseline geochemical conditions in the Chalk aquifer, Berkshire, UK: a basis for groundwater quality management. Appl Geochem 2:251–274CrossRefGoogle Scholar
  20. Fogg GE, Kreitler ChW (1982) Groundwater hydraulics and hydrochemical facies in Eocene aquifers of the East Texas Basin. Report of Investigation No. 127, Bureau of Economic Geology, University of Texas, Austin, TXGoogle Scholar
  21. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  22. Freeze RA, Witherspoon PA (1967) Theoretical analysis of regional groundwater flow, II: effect of water table configuration and subsurface permeability variations. Water Resour Res 3:623–634Google Scholar
  23. Glynn PD, Plummer LN (2005) Geochemistry and the understanding of groundwater systems. Hydrogeol J 13:263–287CrossRefGoogle Scholar
  24. Groffman AR, Crossey LJ (1999) Transient redox regimes in a shallow alluvial aquifer. Chem Geol 161:415–442CrossRefGoogle Scholar
  25. Harvey JW, Bencala KE (1993) The effect of stream bed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29:89–98CrossRefGoogle Scholar
  26. Howard Humphreys (1986) Sukhothai groundwater development project: environmental isotope studies. Royal Irrigation Department, BangkokGoogle Scholar
  27. Hubbert MK (1940) The theory of groundwater motion. J Geol 48:785–944CrossRefGoogle Scholar
  28. Ingebritsen SE, Sanford WE (1998) Groundwater in geologic processes. Cambridge University Press, New YorkGoogle Scholar
  29. Jacobs LA, von Gunten U, Keil R, Kuslys M (1988) Geochemical changes along river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim Cosmochim Acta 52:2693–2706CrossRefGoogle Scholar
  30. Kehew AE (2001) Applied chemical hydrogeology. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  31. Kehew AE, Straw WT, Steinmann WK, Barrese PG, Passarella G, Peng WS (1996) Groundwater quality and flow in a shallow glaciofluvial aquifer impacted by agricultural contamination. Ground Water 34:491–500CrossRefGoogle Scholar
  32. Langmuir D (1969) Geochemistry of iron in coastal-plain groundwater of the Camden, New Jersey area. US Geol Surv Prof Pap 650-CGoogle Scholar
  33. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  34. Larkin RG, Sharp JM Jr (1992) On the relationship between river-basin geomorphology, aquifer hydraulics, and groundwater flow direction in alluvial aquifers. Geol Soc Am Bull 104:1608–1620CrossRefGoogle Scholar
  35. Lensing HJ, Vogt M, Herrling B (1994) Modeling of biologically mediated redox processes in the subsurface. J Hydrol 159:125–143CrossRefGoogle Scholar
  36. Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003CrossRefGoogle Scholar
  37. Massmann G, Pekdeger A, Merz C (2004) Redox processes in the Oderbruch polder groundwater flow system in Germany. Appl Geochem 19:863–886CrossRefGoogle Scholar
  38. Meyboom P (1966) Unsteady groundwater flow near a willow ring in a hummocky moraine. J Hydrol 4:38–62CrossRefGoogle Scholar
  39. Meyboom P (1967) Mass transfer studies to determine the groundwater regime of permanent lakes in hummocky moraine of western Canada. J Hydrol 5:117–142CrossRefGoogle Scholar
  40. Meyboom P, van Everdingen RO, Freeze RA (1966) Patterns of groundwater flow in seven discharge areas in Saskatchewan and Manitoba. Geol Surv Can Bull 147:640–644Google Scholar
  41. National Research Council (2004) Groundwater fluxes across interfaces. Committee on Hydrologic Science, The National Academies Press, Washington DCGoogle Scholar
  42. Puls RW, Barcelona MJ (1989) Ground water sampling for metals analyses. Superfund Ground Water Issue, EPA/540/4–89/001, EPA, Washington DCGoogle Scholar
  43. Rose S, Long A (1988) Monitoring dissolved oxygen in groundwater: some basic considerations. Groundwater Monit Rev 16:15–20Google Scholar
  44. Sanford RF (1994) A quantitative model of groundwater flow during formation of tabular sandstone uranium deposits. Econ Geol 89:341–360Google Scholar
  45. Sophocleous MA (1991) Stream-floodwave propagation through the Great Bend alluvial aquifer, Kansas: field measurements and numerical simulations. J Hydrol 124:207–228CrossRefGoogle Scholar
  46. Sophocleous MA (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  47. Sophocleous MA, Townsend MA, Vogler LD, McClain TJ, Marks ET, Coble GR (1988) Experimental studies in stream-aquifer interaction along the Arkansas River in central Kansas: field testing and analysis. J Hydrol 98:249–273CrossRefGoogle Scholar
  48. Stanley EH, Jones JB (2000) Surface-subsurface interactions: past, present, and future. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, pp 405–417Google Scholar
  49. Starr RC, Gilham RW (1989) Denitrification and organic carbon availability in two aquifers. Ground Water 31:934–947CrossRefGoogle Scholar
  50. Stephens DB (1996) Vadose zone hydrology, CRC-Lewis, Boca Raton, FLGoogle Scholar
  51. Stuyfzand PJ (1989) Hydrology and water quality aspects of Rhine bank groundwater in The Netherlands. J Hydrol 106:341–363CrossRefGoogle Scholar
  52. Stuyfzand PJ (1999) Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol J 7:15–27CrossRefGoogle Scholar
  53. Thorstenson DC, Fisher DW, Croft MG (1979) The geochemistry of the Fox Hills-Basal Hell Creek Aquifer in southwestern North Dakota and northwestern South Dakota. Water Resour Res 15:1479–1498Google Scholar
  54. Tóth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67:4375–4387Google Scholar
  55. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812Google Scholar
  56. Tóth J (1970) A conceptual model of the groundwater regime and the hydrogeologic environment. J Hydrol 10:164–176CrossRefGoogle Scholar
  57. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  58. US Environmental Protection Agency (1992) Secondary drinking water regulations: guidance for nuisance chemicals, EPA 810/K-92-001, http://www.epa.gov/safewater/consumer/2ndstandards.html. Cited 1 February 2004
  59. Volker A (1961) Source of brackish groundwater in Pleistocene formations beneath the Dutch polderland. Econ Geol 56:1045–1057CrossRefGoogle Scholar
  60. von Gunten U, Kull TP (1986) Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water Air Soil Pollut 29:333–346CrossRefGoogle Scholar
  61. Voss CI (2005) The future of hydrogeology. Hydrogeol J 13:1–6CrossRefGoogle Scholar
  62. Wallick EI (1981) Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada. J Hydrol 54:245–283CrossRefGoogle Scholar
  63. Williams RE (1970) Groundwater flow systems and accumulation of evaporate minerals. AAPG Bull 54:1290–1295Google Scholar
  64. Winter TC (1976) Numerical simulation analysis of the interaction of lakes and ground water. US Geol Surv Prof Pap 1001Google Scholar
  65. Winter TC (1983) The interaction of lakes with variably saturated porous media. Water Resour Res 19:1203–1218CrossRefGoogle Scholar
  66. Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys Suppl, pp 985–994Google Scholar
  67. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45CrossRefGoogle Scholar
  68. Winter TC, Harvey JW, Franke OL, Alley WM (1999) Groundwater and surface water: a single resource. US Geol Surv Circ 1139Google Scholar
  69. Woessner WW (2000) Stream and fluvial plain groundwater interactions: rescaling hydrogeologic thought. Ground Water 38:423–429CrossRefGoogle Scholar
  70. Wondzell SM, Swanson FJ (1996) Seasonal and storm flow dynamics of the hyporheic zone of a 4th order mountain stream: I. Hydrological processes. J N Am Benthol Soc 15:3–19CrossRefGoogle Scholar
  71. Wongsawat S, Dhanesvanich O (1983) Hydrogeological map of Thailand: scale 1:1,000,000. Department of Mineral Resources, BangkokGoogle Scholar
  72. Wood WW (1976) Guidelines for collection and field analysis of groundwater samples for selected unstable constituents. USGS Techniques of Water Resources Investigations, Book 1, Chapter D-2, USGS, Reston, VAGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kitchakarn Promma
    • 1
  • Chunmiao Zheng
    • 2
  • Pongpor Asnachinda
    • 3
  1. 1.Department of Natural Resources and EnvironmentNaresuan UniversityPhitsanulokThailand
  2. 2.Department of Geological SciencesUniversity of AlabamaTuscaloosaUSA
  3. 3.Department of Geological SciencesChiang Mai UniversityChiang MaiThailand

Personalised recommendations