Advertisement

Hydrogeology Journal

, Volume 15, Issue 1, pp 121–131 | Cite as

Soil moisture from operational meteorological satellites

  • Wolfgang Wagner
  • Vahid Naeimi
  • Klaus Scipal
  • Richard de Jeu
  • José Martínez-Fernández
Paper

Abstract

In recent years, unforeseen advances in monitoring soil moisture from operational satellite platforms have been made, mainly due to improved geophysical retrieval methods. In this study, four recently published soil-moisture datasets are compared with in-situ observations from the REMEDHUS monitoring network located in the semi-arid part of the Duero basin in Spain. The remotely sensed soil-moisture products are retrieved from (1) the Advanced Microwave Scanning Radiometer (AMSR-E), which is a passive microwave sensor on-board NASA’s Aqua satellite, (2) European Remote Sensing satellite (ERS) scatterometer, which is an active microwave sensor on-board the two ERS satellites and (3) visible and thermal images from the METEOSAT satellite. Statistical analysis indicates that three satellite datasets contribute effectively to the monitoring of trends in surface soil-moisture conditions, but not to the estimation of absolute soil-moisture values. These sensors, or rather their successors, will be flown on operational meteorological satellites in the near future. With further improvements in processing techniques, operational meteorological satellites will increasingly deliver high-quality soil-moisture data. This may be of particular interest for hydrogeological studies that investigate long-term processes such as groundwater recharge.

Keywords

Remote sensing Soil moisture Unsaturated zone Scale effects Satellites 

Résumé

Ces dernières années des avancées inespérées ont été faites dans l’étude de l’humidité du sol à partir de plateformes satellites opérationnelles, principalement grâce à des méthodes de géophysique avancées. Dans cette étude, quatre séries de données récemment publiées sur l’humidité du sol sont comparées avec des observations in-situ issues du réseau d’observation REMEDHUS situé dans la partie semi-aride du bassin de Duero en Espagne. Les données d’humidité du sol issues de la télédétection proviennent (1) d’un radiomètre micro-ondes (AMSR-E), qui est un détecteur de micro-ondes passives embarqué à bord du satellite Aqua de la NASA, (2) du scatteromètre des satellites européens de télédétection (ERS), qui est un détecteur de micro-ondes actives embarqué sur les deux satellites ERS, et (3) des images dans le visible et le thermique enregistrées par le satellite METEOSAT. Une analyse statistique montre que trois séries de données satellites contribuent à l’observation de tendances pour les conditions d’humidité du sol en surface, mais ne permettent pas d’estimer des valeurs absolues d’humidité du sol. Ces détecteurs, ou plutôt leurs successeurs, seront à l’avenir embarqués sur des satellites météorologiques opérationnels. Ces derniers, grâce à des améliorations supplémentaires des techniques de traitement des données, fourniront davantage de données de haute qualité sur l’humidité du sol. Ceci peut être particulièrement intéressant dans le cas d’études hydrogéologiques demandant l’étude de processus à long terme comme la recharge des eaux souterraines.

Resumen

En años recientes se han hecho avances imprevistos en el monitoreo de la humedad del suelo a partir de plataformas operacionales de satélite, principalmente debido al mejoramiento de métodos de recuperación geofísica. En este estudio se comparan tres grupos de datos de humedad del suelo recientemente publicados con observaciones in-situ de la red de monitoreo REMEDHUS que se localiza en la parte semi-árida de la cuenca Duero en España. Los productos de sensores remotos sobre humedad del suelo se recuperan de (1) Radiómetro Avanzado de Exploración con Microondas (AMSR-E) el cual es un sensor pasivo de microondas a bordo del satélite Aqua de NASA, (2) dispersómetro de satélite de Sensores Remotos Europeo (ERS) el cual es un sensor activo de microondas a bordo de los dos satélites ERS, y (3) imágenes visibles y termales del satélite METEOSAT. Los análisis estadísticos indican que los tres grupos de datos de satélite contribuyen efectivamente al monitoreo de tendencias en las condiciones superficiales de humedad del suelo, pero no en la estimación de valores absolutos de humedad del suelo. Estos sensores, o más bien sus sucesores, volarán en satélites meteorológicos operacionales en el futuro cercano. Con un mejoramiento posterior de las técnicas de procesamiento los satélites meteorológicos operacionales continuarán distribuyendo datos de humedad del suelo de alta calidad. Esto puede ser de particular interés para estudios hidrogeológicos que investigan procesos a largo plazo tal como recarga de agua subterránea.

Notes

Acknowledgements

The study was carried out within the framework of the “Geoland” project funded by the 7th Framework Programme of the European Commission and the GLOBESCAT project funded by the Austrian Science Fund. We would also like to acknowledge the collaborations of colleagues from EARS and NSIDC who provided their data products for this study.

References

  1. Cassel DK, Kachanoski RG, Topp GC (1994) Practical considerations for using a TDR cable tester. Soil Technol 7:113–126CrossRefGoogle Scholar
  2. Ceballos A, Martínez-Fernández J, Santos F, Alonso P (2002) Soil-water behaviour of sandy soils under semi-arid conditions in the Duero Basin (Spain). J Arid Eviron 51:501–519CrossRefGoogle Scholar
  3. Ceballos A, Scipal K, Wagner W, Martínez-Fernández J (2005) Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain. Hydrol Process 19:1549–1566CrossRefGoogle Scholar
  4. Entekhabi D, Njoku EG, Houser P, Spencer M, Doiron T, Kim Y, Smith J, Girard R, Belair S, Crow W, Jackson TJ, Kerr YH, Kimball JS, Koster R, McDonald KC, O’Neill PE, Pultz T, Running SW, Shi J, Wood E, van Zyl J (2004) The hydrosphere state (Hydros) satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans Geosci Remote Sens 42:2184–2195CrossRefGoogle Scholar
  5. Entin JK, Robocl A, Vinnikov KY, Hollinger SE, Liu S, Namkhai A (2000) Temporal and spatial scales of observed soil moisture variations in the extratropics. J Geophys Res 105:11865–11877CrossRefGoogle Scholar
  6. Environmental Analysis and Remote Sensing (2006) http://www.ears.nl/. Cited 26 July 2006
  7. Jackson TJ (2002) Remote sensing of soil moisture: implications for groundwater recharge. Hydrogeol J 10:40–51CrossRefGoogle Scholar
  8. Jackson TJ et al (1999) Soil moisture mapping at regional scales using microwave radiometry: The Southern Great Plains Hydrology Experiment. IEEE Trans Geosci Remote Sens 37:2136–2151CrossRefGoogle Scholar
  9. Kerr YH, Waldteufel P, Wigneron J-P, Martinuzzi J-M, Font J, Berger M (2001) Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosci Remote Sens 39:1729–1735CrossRefGoogle Scholar
  10. Martínez-Fernández J, Ceballos A (2003) Temporal stability of soil moisture in a large-field experiment in Spain. Soil Sci Soc Am J 67:1647–1656CrossRefGoogle Scholar
  11. Meesters AGCA, De Jeu RAM, Owe M (2005) Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci Remote Sens Lett 2:121CrossRefGoogle Scholar
  12. Mo T, Choudhury BJ, Schmugge TJ, Wang JR, Jackson TJ (1982) A model for microwave emission from vegetation-covered fields. J Geophys Res 87:11229Google Scholar
  13. Montanarella L, Nègre T (2001) The development of the Alpine soil information system. Int J Appl Earth Observ Geoinform 3(1):18–24CrossRefGoogle Scholar
  14. National Snow and Ice Data Centre (2006) AMSR-E/Aqua daily L3 surface soil moisture. http://www.nsidc.org/data/docs/daac/ae_land3_l3_soil_moisture.gd.html. Cited 26 July 2006
  15. Njoku EG, Chan TK, Nghiem SV, Jackson TJ, Lakshmi V (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41:215–229CrossRefGoogle Scholar
  16. Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens 39:1643–1654CrossRefGoogle Scholar
  17. Roebeling RA, Van Putten E, Genovese G, Rosema A (2004) Application of meteosat derived meteorological information for crop yield predictions in Europe. Int J Remote Sens 25(23):5389–5401CrossRefGoogle Scholar
  18. Rosema A, Verhees L, van Putten E, Gielen H, Lack T, Wood J, Lane A, Fannon J, Estrela T, Dimas M, de Bruin H, Moena A, Meijninger W (2001) European energy and water balance monitoring system. Final Report of 4th Framework Programme of the European Commission Contract Nr. ENV4-CT97-0478, EARS Remote Sensing Consultants, Delft, The Netherlands, pp 147Google Scholar
  19. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574CrossRefGoogle Scholar
  20. Vauchaud G, Passerat de Silans A, Balabanis P, Vauclin M (1985) Temporal stability of spatially measured soil water probability density function. Soil Sci Soc Am 49:22–828Google Scholar
  21. Verstraeten WW, Veroustraete F, van der Sande CJ, Grootaers I, Feyen J (2006) Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens Environ 101(3):299–314CrossRefGoogle Scholar
  22. Vienna University of Technology (2006) Global monitoring of the hydrosphere with radar satellites. http://www.ipf.tuwien.ac.at/radar/. Cited 26 July 2006
  23. Vinnikov KY, Robock A, Qiu S, Entin JK, Owe M, Choudhsury BJ, Hollinger SE, Njoku EG (1999) Satellite remote sensing of soil moisture in Illinois, United States. J Geophys Res 104:4145–4168CrossRefGoogle Scholar
  24. Wagner W, Lemoine G, Borgeaud M, Rott H (1999) A study of vegetation cover effects on ERS scatterometer data. IEEE Trans Geosci Remote Sens 37(2):938–948CrossRefGoogle Scholar
  25. Wagner W, Scipal K, Pathe C, Gerten D, Lucht W, Rudolf B (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. JGR Atmos 108(D19):4611CrossRefGoogle Scholar
  26. Zegelin SJ, White I, Russel GF (1992) A critique of the time domain reflectometry technique for determining field soil-water content. In: Topp GC, Reynolds WD, Green RE (eds) Advances in measurement of soil physical properties: bringing theory into practice. SSSA Spec. Publ. 30, Soil Science Society of America, Madison, WI, pp 187–208Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Wolfgang Wagner
    • 1
  • Vahid Naeimi
    • 1
  • Klaus Scipal
    • 2
  • Richard de Jeu
    • 3
  • José Martínez-Fernández
    • 4
  1. 1.Institute of Photogrammetry and Remote SensingVienna University of TechnologyWienAustria
  2. 2.European Centre for Medium-Range Weather Forecasts (ECMWF)Shinfield ParkUnited Kingdom
  3. 3.Department of Hydrology and GeoEnvironmental SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.Department of GeographyUniversity of SalamancaSalamancaSpain

Personalised recommendations