Advertisement

Hydrogeology Journal

, Volume 15, Issue 1, pp 159–166 | Cite as

Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE

  • Matthew Rodell
  • Jianli Chen
  • Hiroko Kato
  • James S. Famiglietti
  • Joe Nigro
  • Clark R. Wilson
Paper

Abstract

Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.

Keywords

Groundwater monitoring Water budget Mississippi River basin Geophysical methods Remote sensing 

Résumé

A partir d’observations satellitaires du programme Gravity Recovery and Climate Experiment (GRACE), l’étude de la variation dans le temps du champ de gravité terrestre permet de déduire les variations du stock d’eau terrestre, ce qui comprend l’eau souterraine, l’humidité du sol et la neige. Les variations de stock d’eau souterraine peuvent être estimées à partir d’informations auxiliaires sur les deux autres composantes. GRACE pourrait être le seul espoir pour l’établissement des bilans d’eau souterraine dans les régions du monde où les données sont peu nombreuses. Dans cette étude concernant le bassin du fleuve Mississippi et ses quatre sous bassins principaux, l’humidité du sol et la neige ont été simulées par le modèle Global Land Data Assimilation System (GLDAS) et utilisées pour isoler les anomalies de stock d’eau souterraine à partir des données de stock d’eau du GRACE. Les résultats ont été évalués à partir d’enregistrements de niveaux piézomètriques réalisés dans 58 puits localisés dans les aquifères libres du bassin. L’incertitude liée à la technique a également été évaluée. Les estimations GRACE-GLDAS concordaient avec les chroniques de puits pour le bassin du Mississippi ainsi que pour les deux sous bassins présentant une superficie supérieure à 900,000 km2. La technique s’est avérée peu performante pour les deux sous bassins d’environ 500,000 km2. L’amélioration continue des méthodes de traitement des données du GRACE devrait à l’avenir augmenter la performance de la technique ainsi que la résolution temporelle.

Resumen

Es posible derivar variaciones en el almacenamiento de agua terrestre en base a observaciones de satélite del campo gravitacional temporal variable de la Tierra a partir del Experimento Clima y Recuperación de Gravedad (GRACE), el cual incluye agua subterránea, humedad del suelo, y nieve. Dada la información auxiliar de los dos últimos, uno puede estimar variaciones en almacenamiento de agua subterránea. GRACE puede ser la única esperanza para las evaluaciones de agotamiento de agua subterránea en regiones del mundo con datos pobres. En este estudio se simularon la nieve y humedad del suelo mediante el Sistema de Asimilación de Datos Globales del Terreno (GLDAS) y se usaron para aislar anomalías de almacenamiento de agua subterránea de los datos de almacenamiento de agua GRACE para la cuenca del Río Mississippi y sus cuatros sub-cuencas principales. Los resultados se evaluaron utilizando registros de niveles de agua para 58 pozos emplazados en acuíferos no confinados de la cuenca. También se evaluó la incertidumbre de la técnica. Los estimados provenientes de GLDAS-GRACE se comparan favorablemente con las series de tiempo de los pozos para la cuenca del Río Mississippi y las dos sub-cuencas cuyas áreas son mayores de 900,000 km2. La técnica se desempeñó pobremente para las dos sub-cuencas que tienen áreas de aproximadamente 500,000 km2. El mejoramiento continuo de los métodos de procesamiento GRACE es posible que mejore la habilidad de la técnica en el futuro mejorando al mismo tiempo la resolución temporal.

Notes

Acknowledgements

The authors thank John Wahr and Sean Swenson of the University of Colorado for discussions on GRACE error sources and estimates. This research was supported by multiple grants from the US National Aeronautics and Space Administration’s (NASA) Terrestrial Hydrology, Solid Earth and Natural Hazards, and GRACE Science Programs.

References

  1. Becker MW (2006) Potential for satellite remote sensing of groundwater. Ground Water 44:306–318CrossRefGoogle Scholar
  2. Berg AA, Famiglietti JS, Rodell M, Reichle RH, Jambor U, Holl SL, Houser PR (2005) Development of a hydrometeorological forcing data set for global soil moisture estimation. Int J Climatol 25:1697–1714CrossRefGoogle Scholar
  3. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005a) Low degree spherical harmonic influences on GRACE water storage estimates. Geophys Res Lett 32:L14405. DOI 10.1029/2005GL022964 CrossRefGoogle Scholar
  4. Chen JL, Wilson CR, Tapley BD, Famiglietti JS, Rodell M (2005b) Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models. J Geod 79:532–539. DOI 10.1007/s00190-005-0005-9 CrossRefGoogle Scholar
  5. Chen JL, Wilson CR, Seo K-W (2006) Optimized smoothing of GRACE time-variable gravity observations. J Geod 111, B6, B06408. DOI 10.1029/2005JB004064
  6. Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G-Y, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model (CLM). Bull Am Meteorol Soc 84:1013–1023CrossRefGoogle Scholar
  7. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of the upgraded Noah land-surface model in the NCEP operational mesoscale Eta model. J Geophys Res 108:8851. DOI 10.1029/2002JD003296 CrossRefGoogle Scholar
  8. Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote-sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust J Water Resour 10(2):125–138Google Scholar
  9. Eltahir EAB, Yeh PJ-F (1999) On the asymmetric response of aquifer level to floods and droughts in Illinois. Water Resour Res 35:1199–1217CrossRefGoogle Scholar
  10. Gottschalck J, Meng J, Rodell M, Houser P (2005) Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System (GLDAS) land surface states. J Hydrometeorol 6:573–598CrossRefGoogle Scholar
  11. Han S-C, Shum CK, Jekeli C, Alsdorf D (2005) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32: L07302. DOI 10.1029/2005GL022382 CrossRefGoogle Scholar
  12. Koster RD, Suarez MJ (1996) Energy and water balance calculations in the Mosaic LSM. NASA Tech Memorandum 104606(9):76Google Scholar
  13. McGuire VL (2003) Water-level changes in the High Plains aquifer, predevelopment to 2001, 1999 to 2000, and 2000 to 2001. US Geol Surv Fact Sheet No. 078–03, USGS, Reston, VA, p 4Google Scholar
  14. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35:2705–2723CrossRefGoogle Scholar
  15. Rodell M, Famiglietti JS (2001) An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 37:1327–1340CrossRefGoogle Scholar
  16. Rodell M, Famiglietti JS (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, central US. J Hydrol 263:245–256CrossRefGoogle Scholar
  17. Rodell M, Houser PR (2004) Updating a land surface model with MODIS derived snow cover. J Hydrometeorol 5:1064–1075CrossRefGoogle Scholar
  18. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004a) The Global Land Data Assimilation System. Bull Am Meteorol Soc 85:381–394CrossRefGoogle Scholar
  19. Rodell M, Famiglietti JS, Chen J, Seneviratne S, Viterbo P, Holl S, Wilson CR (2004b) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31:L20504. DOI 10.1029/2004GL020873 CrossRefGoogle Scholar
  20. Rodell M, Chao BF, Au AY, Kimball J, McDonald K (2005) Global biomass variation and its geodynamic effects, 1982–1998. Earth Interact 9:1–19CrossRefGoogle Scholar
  21. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FGR, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310. DOI 10.1029/2004GL021908 CrossRefGoogle Scholar
  22. Seneviratne S, Viterbo P, Lüthi D, Schär C (2004) Inferring changes to terrestrial water storage using ERA-40 reanalysis data: the Mississippi River basin. J Climate 17:2039–2057CrossRefGoogle Scholar
  23. Swenson S, Wahr J (2006a) Estimating large-scale precipitation minus evapotranspiration from GRACE satellite gravity measurements. J Hydrometeorol 7:252–270CrossRefGoogle Scholar
  24. Swenson S, Wahr J (2006b) Post-processing removal of correlated errors in GRACE data, Geophys Res Lett 33:L08402. DOI 10.1029/2005GL025285 CrossRefGoogle Scholar
  25. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39:1223. DOI 10.1029/2002WR001808 CrossRefGoogle Scholar
  26. Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:L24404. DOI 10.1029/2005GL024851 CrossRefGoogle Scholar
  27. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505CrossRefGoogle Scholar
  28. Velicogna I, Wahr J, Hanna E, Huybrechts P (2005) Short-term mass variability in Greenland, from GRACE. Geophys Res Lett 32:L05501CrossRefGoogle Scholar
  29. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103:30205–30230CrossRefGoogle Scholar
  30. Wahr J, Swenson S, Velicogna I (2006) The accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. DOI 10.1029/2005GL025305 CrossRefGoogle Scholar
  31. Winter TC, Harvey JW, Franke QL, Alley WM (1998) Ground water and surface water: a single resource. USGS Circ 1139:79Google Scholar
  32. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Matthew Rodell
    • 1
  • Jianli Chen
    • 2
  • Hiroko Kato
    • 1
    • 3
  • James S. Famiglietti
    • 4
  • Joe Nigro
    • 1
    • 5
  • Clark R. Wilson
    • 6
  1. 1.Hydrological Sciences Branch, Code 614.3NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Center for Space ResearchThe University of Texas at AustinAustinUSA
  3. 3.Earth System Sciences Interdisciplinary CenterThe University of MarylandCollege ParkUSA
  4. 4.Earth System ScienceUniversity of CaliforniaIrvineUSA
  5. 5.Science Systems and Applications, Inc.LanhamUSA
  6. 6.Department of Geological Sciences, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations