Hydrogeology Journal

, Volume 15, Issue 2, pp 281–296 | Cite as

A radioisotope tracer investigation to determine the direction of groundwater movement adjacent to a tidal creek during spring and neap tides



A radioisotope tracer (82Br) was injected into a sand aquifer adjacent to a tidal creek at Hat Head, New South Wales, Australia. The injection was timed to coincide with the falling limb of a spring tide in August 2001 and was repeated in July 2002 during a period of neap tides. The tracer movement was detected using gamma logging and fixed gamma detectors in a bore 0.9 m from an injection bore and in a line approximately perpendicular to the creek. Movement of the tracer was detected by comparing measured gamma activity with calibrated activities determined under laboratory conditions. Net movement of the tracer indicated approximately 0.001 m/day laterally towards the creek and 0.07 m/day vertically upward during spring tide conditions. This pattern is reversed during neap tide conditions with little net vertical movement but horizontal movement of 0.15 m/day. The measurements indicated an oscillatory motion coinciding with the tide but lagging the tide by approximately 4.5–6.5 h. The vertical flow during spring tides indicates that vertical movement of the saline interface occurs and results in mixing of different water types beneath the banks of the creek.


Coastal aquifers Radioisotope tracer Br-82 Australia Hydrochemistry 


Un traceur isotopique radioactif (82Br) a été injecté dans un aquifère sableux bordant une crique soumise à l’influence de la marée, à Hat Head (Nouvelles-Galles du Sud, Australie). L’injection fut programmée afin de coïncider avec la phase descendante d’une marée de vive-eau en août 2001, puis répétée en juillet 2002 en période de marée de morte-eau. Les mouvements du traceur étaient suivis à la fois par la réalisation de diagraphies d’activité gamma et par des détecteurs gamma fixes, dans un piézomètre situé à 0.9 m d’un forage d’injection et sur une ligne approximativement perpendiculaire à la crique. Ces mouvements étaient détectés par comparaison entre les activités gamma mesurées et les activités calibrées déterminées en laboratoire. Le mouvement net du traceur en conditions de vives-eaux indique une vitesse latérale de l’ordre de 0.001 m/jour en direction de la crique, et une vitesse verticale ascendante de 0.07 m/jour. Cette tendance s’inverse en conditions de mortes-eaux, avec un faible mouvement vertical, mais un mouvement horizontal de 0.15 m/jour. Les mesures mettent en évidence un mouvement oscillatoire coïncidant avec la marée, avec toutefois un décalage de 4.5 à 6.5 heures environ. Le flux vertical observé au cours des marées de vives-eaux indique l’existence d’un mouvement vertical de l’interface eau douce / eau salée, qui génère un mélange des différents types d’eau sous les rives de la crique.


Un radioisótopo trazador (82Br), se inyectó en un acuífero de arena, adyacente a un canal de marea en Hat Head, New South Wales, Australia. La inyección fue sincronizada para coincidir con la parte descendente de una marea viva en agosto de 2001 y se repitió en julio de 2002, durante un periodo de mareas muertas. El movimiento del trazador fue detectado mediante el uso de registros gamma y detectores gamma estáticos, en una perforación a 0.9 m de una perforación de inyección y en una línea aproximadamente perpendicular al canal. El movimiento del trazador se detectó, comparando la actividad gamma medida con las actividades calibradas determinadas bajo condiciones de laboratorio. El movimiento neto del trazador indicó aproximadamente 0.001 m/dia lateralmente hacia el canal y 0.07 m/dia verticalmente ascendente durante las condiciones de mareas vivas. Este modelo se invierte durante las condiciones de marea muerta, con pequeño movimiento vertical neto, pero con un movimiento horizontal de 0.15 m/d. Las mediciones indicaron un movimiento oscilatorio coincidiendo con el tipo de marea, pero retrasándose a la marea por aproximadamente 4.5–6.5 horas. El flujo vertical durante las mareas vivas, indica que el movimiento vertical de la interfase salina ocurre y produce mezclas de tipos de agua diferentes, bajo los bancos del canal.



Mark Groskops of the Water Research Laboratory is thanked for the assistance in the field and the installation of the monitoring points. Tom Kluss, Peter Airey, Suzanne Hollins, Adrian Mozjeko, Gordon McOrist, David Stone, Carol Tadros, Roland Wong and Gregor Büning are thanked for assistance with the tracer study design and implementation. The work was supported by an AINSE grant and by funding from Kempsey Council.


  1. Acworth RI, Andersen MS (2004) Geochemical evidence of freshwater discharge patterns and mixing near a tidal creek, Hat Head, Australia. In: Carrillo (ed) Groundwater flow understanding: from local to regional scales, CD, IAH, http://www.IAH.org
  2. Acworth RI, Dasey GR (2003) Mapping of the hyporheic zone around a tidal creek using a combination of borehole logging, borehole electrical tomography and cross-creek electrical imaging. Hydrogeol J 11.3:368–337Google Scholar
  3. Acworth RI, Soriano R, Turner IL (2000) The vertical head distribution in a coastal sand-dune aquifer. In: Sililo (ed) Groundwater: past achievements and future challenges. Balkema, Rotterdam, pp 67–72Google Scholar
  4. Andersen MS (2001) Geochemical processes at a freshwater-seawater interface. PhD Thesis, Technical University of Denmark, Kgs. LyngbyGoogle Scholar
  5. Apelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. Balkema, RotterdamGoogle Scholar
  6. Barlow PM (2003) Ground water in freshwater-saltwater environments of the Atlantic Coast. Circular 1262, US Geological Survey, Reston, VAGoogle Scholar
  7. Barnes K, Ellery W, Kindness A (2002) A preliminary analysis of water chemistry of the Mkuze Wetland System Kwa Zulu-Natal: a mass balance approach. Water SA 28:1–12Google Scholar
  8. Charette MA, Splivallo R, Herbold C, Bollinger MS, Moore W (2003) Salt marsh submarine groundwater discharge as traced by radium isotopes. Mar Chem 84:113–121CrossRefGoogle Scholar
  9. Drost W, Klotz D (1983) Aquifer characteristics, in Guidebook on Nuclear Techniques in Hydrology, IAEA Technical Report Series No. 91, IAEA, Vienna, pp 223–256Google Scholar
  10. Gaspar E (1987) Tracer methodology in hydrology. In: Gaspar E (ed) Modern trends in tracer hydrology. CRC Press, Boca Raton, FLGoogle Scholar
  11. Happell JD, Price RM, Top Z, Swart PK (2003) Evidence for the removal of CFC-11, CFC-12, and CFC-113 at the groundwater-surface water interface in the Everglades. J Hydrol 279:94–105CrossRefGoogle Scholar
  12. Hughes CE, Stone DJM, Acworth RI (2003) A radioisotope tracer study of estuarine groundwater movement on the eastern Australian coast. Isotope Hydrology and Integrated Water Resource Management, IAEA Conference, 17–23 May 2003, ViennaGoogle Scholar
  13. Nielsen P (1990) Tidal dynamics of the watertable in beaches. Water Resour Res 26(9):2127–2134CrossRefGoogle Scholar
  14. Nowicki WK, Requintina E, Van Keuren D, Portnoy J (1999) The role of sediment denitrification in reducing groundwater-derived nitrate inputs to Nauset Marsh Estuary, Cape Cod, Massachusetts. Estuaries 22:245–259CrossRefGoogle Scholar
  15. Oncescu M, Gaspar E, Dinescu L (1973) On the determination of some constants of the tracer dynamics in field investigations. Romanian J Phys 18:1023–1033Google Scholar
  16. Philip JR (1973) Periodic non-linear diffusion: an integral relation and its consequences. Aust J Phys 26:513–519Google Scholar
  17. Price RM, Top ZT, Happell JD, Swart PK (2003) Use of tritium and helium to define groundwater flow conditions in Everglades National Park. Water Resour Res 39.2Google Scholar
  18. Soriano S (2004) Groundwater dynamics in coastal sand dune aquifers: the impacts of transient bouindary conditions. PhD Thesis, The School of Civil and Environmental Engineering, University of New South Wales, SydneyGoogle Scholar
  19. Testa JM, Charette MA, Sholkovitz ER, Allen MC, Rago A, Herbold CW (2002) Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biol Bull 203:255–256CrossRefGoogle Scholar
  20. Turner IL, Coates BP, Acworth RI (1996) The effects of tides and waves to groundwater elevations in coastal zones. Hydrogeol J 4:51–69CrossRefGoogle Scholar
  21. Westbrook SJ, Rayner JL, Davis GB, Clement TP, Bjerg PL, Fisher SJ (2005) Interaction between shallow groundwater, saline surface water and contaminant discharge at a seasonally and tidally forced estuarine boundary. J Hydrol 302:255–269CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Water Research Laboratory, School of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Australian Nuclear Science and Technology OrganisationMenaiAustralia

Personalised recommendations