Hydrogeology Journal

, Volume 14, Issue 7, pp 1122–1146

Relations between climatic variability and hydrologic time series from four alluvial basins across the southwestern United States

  • R. T.  Hanson
  • M. D. Dettinger
  • M. W. Newhouse
Paper

Abstract

Hydrologic time series of groundwater levels, streamflow, precipitation, and tree-ring indices from four alluvial basins in the southwestern United States were spectrally analyzed, and then frequency components were reconstructed to isolate variability due to climatic variations on four time scales. Reconstructed components (RCs), from each time series, were compared to climatic indices like the Pacific Decadal Oscillation (PDO), North American Monsoon (NAM), and El Niño-Southern Oscillation (ENSO), to reveal that as much as 80% of RC variation can be correlated with climate variations on corresponding time scales. In most cases, the hydrologic RCs lag behind the climate indices by 1–36 months. In all four basins, PDO-like components were the largest contributors to cyclic hydrologic variability. Generally, California time series have more variation associated with PDO and ENSO than the Arizona series, and Arizona basins have more variation associated with NAM. ENSO cycles were present in all four basins but were the largest relative contributors in southeastern Arizona. Groundwater levels show a wide range of climate responses that can be correlated from well to well in the various basins, with climate responses found in unconfined and confined aquifers from pumping centers to mountain fronts.

Keywords

Groundwater/surface-water relations Groundwater statistics Climate Climatic variability United States 

Résumé

Les séries de données hydrologiques (niveaux piézométriques, débits des rivières, précipitations, indices de végétation) de quatre bassins alluviaux du Sud des Etats-Unis ont fait l’objet d’une analyse spectrale, suivi d’une reconstruction des composantes fréquentielles afin d’isoler la variabilité due aux variations climatiques, selon quatre différentes échelles de temps. Les composantes reconstruites (RCs), en provenance de chaque séries temporelles, ont été comparées aux indices climatiques tel l’Oscillation Décadaire du Pacifique (PDO), la Mousson Nord-Américaine (NAM), et l’Oscillation du Sud El-Niño (ENSO), révélant du coup que 80% de la variabilité des RD peut être corrélé avec des variations climatiques sur les échelles de temps correspondantes. Dans la plus part des cas, le retard des RCs hydrologiques sur les indices climatiques est compris entre 1 et 36 mois. Dans les quatre bassins, les composantes proches du PDO contribuent le plus à la variabilité du cycle hydrologique. Générallement, les données temporelles de la Californie reproduisent plus de variations associées avec la PDO et l’ENSO, que les séries de l’Arizona, tandis que les bassins de ce dernier ont de meilleures corrélations avec le NAM. Les cyles de l’ENSO sont présents dans les quatres bassins, mais sont plus intenses dans le Sud de l’Arizona. Les niveaux des eaux souterraines montrent une grande variabilité de réponses climatiques qui peuvent être corrélées de puits en puits dans les différents bassins, avec des réponses climatiques trouvées dans les aquifères libres et captifs, des puits de pompage jusqu’au pied des montagnes.

Resumen

Se han analizado espectralmente series de tiempo hidrológicas de niveles de agua, caudales, precipitación, e índices de anillos de árbol provenientes de cuatro cuencas aluviales del suroeste de Estados Unidos y se reconstruyeron componentes de frecuencia para separar la variabilidad ocasionada por variaciones climáticas en cuatro escalas de tiempo. Se compararon componentes reconstruidos (RCs) de cada serie de tiempo con índices climáticos tal como Oscilación Decenaria del Pacífico (PDO), Monzón de Norte América (NAM), y la Oscilación Sureña El Niño (ENSO) para encontrar que hasta el 80% de la variación RC puede correlacionarse con variaciones climáticas en escalas de tiempo correspondientes. En muchos casos, los RCs hidrológicos se encuentran detrás de los índices climáticos en periodos de 1–36 meses. En las cuatro cuencas los componentes del PDO fueron los mayores contribuyentes a la variabilidad hidrológica cíclica. Generalmente, las series de tiempo de California tienen más variación asociada con PDO y ENSO que las series de Arizona, y las cuencas de Arizona tiene más variación asociada con NAM. Los ciclos ENSO se presentaron en las cuatro cuencas pero fueron contribuyentes relativos más grandes en el sureste de Arizona. Los niveles de agua subterránea muestran un amplio rango de respuestas climáticas que pueden correlacionarse de pozo en pozo en las distintas cuencas, con respuestas climáticas detectadas en acuíferos confinados y no confinados desde centros de bombeo a frentes montañosos.

References

  1. Adams DK, Comrie AC (1997) The North American monsoon. Bull Am Meteor Soc 78:2197–2213CrossRefGoogle Scholar
  2. Carleton AM, Carpenter DA, Weber PJ (1990) Mechanisms of interannual variability of the southwest United States summer rainfall maximum. J Climate 3:99–1015CrossRefGoogle Scholar
  3. Cayan DR, Webb RH (1992) El Niño/Southern Oscillation and streamflow in the western United States. In: Diaz HF, Markgraf V (eds) El Niño: historical and paleoclimatic aspects of the Southern Oscillation. Cambridge University Press, Cambridge, pp 29–68Google Scholar
  4. Changnon (1987) Detecting drought conditions in Illinois. Illinois State Water Surv Circ 164–87:36Google Scholar
  5. Chen Z, Grasby SE, Osadetz KG (2003) Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. J Hydrol 290:43–62CrossRefGoogle Scholar
  6. Dettinger MD, Ghil M, Strong CM, Weibel W, Yiou P (1995) Software expedites singular-spectrum analysis of noisy time series. EOS Trans Am Geophys Union 76(2):12–21Google Scholar
  7. Dickinson JE (2002) Inferring time-varying recharge from inverse analysis of long-term water levels. MSc Thesis, University of Arizona, Flagstaff, AZ, p 56Google Scholar
  8. Dickinson JE, Hanson RT, Ferré TPA (2004) Inferring time-varying recharge from inverse analysis of long-term water levels. Water Resour Res 40(7):W07403, 15CrossRefGoogle Scholar
  9. Freethey GW (1982) Hydrologic analysis of the upper San Pedro Basin from the Mexico–United States international boundary to Fairbanks, Arizona. US Geol Surv Open-File Rep 82–752:52Google Scholar
  10. Gleick PH, Adams DB (2000) Water: the potential consequences of climate variability and change for the water resources of the United States: the report of the Water Sector Team of the National Assessment of the Potential Consequences of Climate Variability and Change for the U.S. Global Research Program. Pacific Institute for studies in Development, Environment, and Security, Oakland, CA, p 151Google Scholar
  11. Hanson RT, Benedict JF (1993) Simulation of ground-water flow and potential land subsidence, upper Santa Cruz River Basin, Arizona. US Geol Surv Water-Resour Invest Rep 93–4196:47Google Scholar
  12. Hanson RT, Dettinger MD (2005) Ground water/surface water responses to global climate simulations, Santa Clara-Calleguas Basin, Ventura, California. J Am Water Resour Assoc 41(3):517–536Google Scholar
  13. Hanson RT, Martin P, Koczot KM (2003) Simulation of ground-water/surface-water flow in the Santa Clara-Calleguas Basin, Ventura County, California. US Geol Surv Water-Resour Invest Rep WRIR02–4136:214Google Scholar
  14. Hanson RT, Newhouse MW, Dettinger MD (2004) A methodology to assess relations between climatic variability and variations in hydrologic time series in the southwestern United States. J Hydrol 287(1–4):253–270Google Scholar
  15. Hereford R, Webb RH (2001) Landscape change and climate variation during the past 100 years in the Central Mojave Desert, California and Nevada. 2001 Desert Symposium Field Trip, Valjean Valley, CA, 22 April 2001, San Bernadino County Museum, Redlands, CA, p 8Google Scholar
  16. Hereford R, Webb RH (2002) Climate variation since 1900 in the Mojave Desert region affects geomorphic processes and raises issues for land management. In: Reynolds RE (ed) The changing face of the east Mojave Desert. California State University, Desert Studies Consortium, Fullerton, CA, p 54–55Google Scholar
  17. Leake SA (2001) Southwest Ground-Water Resources Project: http://www.az.water.usgs.gov/swgwrp/
  18. Leake SA, Konieczki AD, Rees JAH (2000) Ground-water resources for the future: desert basins of the southwest. US Geol Surv Fact Sheet 086-00, USGS, Denver, CO, p 4Google Scholar
  19. Lines GC (1996) Ground-water and surface-water relations along the Mojave River, southern California. US Geol Surv Water-Resour Invest Rep 96–4241:10Google Scholar
  20. Mantua N, Steven H (2002) The Pacific Decadal Oscillation. J Oceanogr 58(1):35–44CrossRefGoogle Scholar
  21. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  22. Merideth R (2000) A primer on climatic variability and change in the southwest. Udall Center for Studies in Public Policy and the Institute for the Study of Planet Earth. University of Arizona, Tucson, AZ, p 28Google Scholar
  23. NOAA (2001) http://www.ngdc.noaa.gov/paleo/. Cited 12 June 2001
  24. Pool DR, Coes AL (1999) Hydrogeologic investigations of the Sierra Vista subwatershed of the Upper San Pedro Basin, Cochise County, southeastern Arizona. US Geol Survey Water-Resour Invest Rep 99–4197:41Google Scholar
  25. Stamos C, Martin P, Nishikawa T, Cox BF (2001) Simulation of ground-water flow in the Mojave River Basin, California. US Geol Surv Water-Resources Invest Rep 01-4002:129Google Scholar
  26. Taylor CJ, Alley WM (2001) Ground-water-level monitoring and the importance of long-term water-level data. US Geol Surv Circ 1217:68Google Scholar
  27. Townley LR (1995) The response of aquifers to periodic forcing. Adv Water Resour 18:125–146CrossRefGoogle Scholar
  28. University Corporation for Atmospheric Research (2006) http://www.cgd.ucar.edu/cas/catalog/climind/soiAnnual.html#download. Cited 19 July 2006
  29. University of Washington (2006) http://jisao.washington.edu/pdo/PDO.latest. Cited 19 July 2006
  30. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D 58:95–126CrossRefGoogle Scholar
  31. Ventura County Public Works Agency (1993) Quadrennial report of hydrologic data 1989–92. Ventura County Department of Public Works, Flood Control Department, Planning and Regulatory Division, Hydrology Section, Ventura County Public Works Agency, Ventura, CAGoogle Scholar
  32. Webb RH, Betancourt JL (1992) Climatic variability and flood frequency of the Santa Cruz River, Pima County, Arizona. US Geol Surv Water Suppl Pap 2379:40Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • R. T.  Hanson
    • 1
  • M. D. Dettinger
    • 2
  • M. W. Newhouse
    • 1
  1. 1.US Geological SurveyCalifornia Water Science CenterSan DiegoUSA
  2. 2.Climate Research DivisionScripps Institution of Oceanography/USGSLa JollaUSA

Personalised recommendations