Advertisement

Hydrogeology Journal

, Volume 14, Issue 8, pp 1452–1469 | Cite as

Characterisation of sea-water intrusion in the Pioneer Valley, Australia using hydrochemistry and three-dimensional numerical modelling

  • A. D. WernerEmail author
  • M. R. Gallagher
Paper

Abstract

Sea-water intrusion is actively contaminating fresh groundwater reserves in the coastal aquifers of the Pioneer Valley, north-eastern Australia. A three-dimensional sea-water intrusion model has been developed using the MODHMS code to explore regional-scale processes and to aid assessment of management strategies for the system. A sea-water intrusion potential map, produced through analyses of the hydrochemistry, hydrology and hydrogeology, offsets model limitations by providing an alternative appraisal of susceptibility. Sea-water intrusion in the Pioneer Valley is not in equilibrium, and a potential exists for further landward shifts in the extent of saline groundwater. The model required consideration of tidal over-height (the additional hydraulic head at the coast produced by the action of tides), with over-height values in the range 0.5–0.9 m giving improved water-table predictions. The effect of the initial water-table condition dominated the sensitivity of the model to changes in the coastal hydraulic boundary condition. Several salination processes are probably occurring in the Pioneer Valley, rather than just simple landward sea-water advancement from “modern” sources of marine salts. The method of vertical discretisation (i.e. model-layer subdivision) was shown to introduce some errors in the prediction of water-table behaviour.

Keywords

Saltwater/freshwater relations Numerical modelling Coastal aquifers Salination Australia 

Résumé

L’intrusion de l’eau de mer est en train de contaminer activement les réserves d’eau souterraine potable dans les aquifères côtiers de la vallée de Pioneer au nord-est de l’Australie. Un modèle en trois dimensions de l’intrusion de l’eau de mer a était réalisé en utilisant le code MODHMS pour étudier les processus à l’échelle régionale et faciliter l’évaluation de stratégies de gestion du système. Une carte piézomètrique de l’intrusion de l’eau de mer, réalisée grâce à l’étude de l’hydrogéochimie, l’hydrologie et l’hydrogéologie, compense les limites du modèle en permettant une évaluation alternative de la vulnérabilité. L’intrusion de l’eau de mer dans la vallée de Pioneer n’est pas en équilibre et un potentiel existe pour des déplacements plus à l’intérieur des terres de l’étendue des eaux souterraines salées. Le modèle devait prendre en compte les surélévations dues aux marées (la charge hydraulique supplémentaire au niveau de la côte produite par l’action des marées), avec des valeurs de surélévations de l’ordre de 0.5–0.9 m entraînant de meilleures prédictions du niveau de la nappe. L’effet de l’état initial de la nappe était prédominant sur la sensibilité du modèle par rapport aux changements de la condition hydraulique aux limites au niveau de la côte. Plusieurs processus de salinisation doivent probablement avoir lieu dans la vallée de Pioneer et non pas uniquement une simple avancée d’eau de mer dans les terres à partir de sources “modernes” de sels marins. La méthode de la discrétisation verticale (subdivision en couches dans le modèle) s’est révélée être à l’origine d’erreurs dans la prédiction du comportement de la nappe.

Resumen

La intrusión de agua de mar está contaminando las reservas de agua subterráneas de agua dulce en los acuíferos costeños en Pioneer Valley, noreste de Australia. Se ha desarrollado un modelo tridimensional de intrusión de agua de mar mediante el uso de código MODHMS para explorar procesos de escala regional y para asistir la evaluación de estrategia para el manejo del sistema. Un mapa de potencial de intrusión de agua de mar, producido mediante el análisis de hidroquímica, hidrología e hidrogeología balancea las limitaciones del modelo al proporcionar una asesoría alternativa de susceptibilidad. En Pioneer Valley la intrusión de agua del mar no está en equilibrio y existe el potencial de movimiento en la extensión de agua subterranea salada desde el mar hacia la tierra. El modelo requirió considerar la carga hidráulica adicional en la costa producida por la acción de las mareas (sobre-altura de la marea), con una sobre-altura en el rango de 0.5–0.9 m, locual produjo mejores predicciones de la mesa de agua. El efecto de la condición inicial de la mesa de agua dominaba la sensitividad del modelo a cambios en la condición de límite hidráulico de la costa. Es probable que múltiples procesos de salinización estén ocurriendo en Pioneer Valley, en lugar de un avance simple de agua de mar hacia la tierra de fuentes “modernas” de sales marinas. Se observó que el método de discretización vertical (subdivisión de capas del modelo) introduce algunos errores en las predicciones de cambios en el comportamiento de la mesa de agua.

Notes

Acknowledgements

The authors wish to gratefully acknowledge the Queensland Department of Natural Resources and Mines (NR&M) for providing funding for this project. The authors are thankful for technical assistance provided by NR&M Water Assessment staff and for the assistance with MODHMS given by Dr Sorab Panday. We also thank three anonymous reviewers for their helpful comments.

References

  1. Abarca E, Carrera J, Voss C, Sánchez-Vila X (2002) Effect of the aquifer bottom morphology in the evolution of the saltwater–freshwater interface. XVII Salt Water Intrusion Meeting, 6–10 May 2002, DelftGoogle Scholar
  2. Ataie-Ashtiani B (2001) Tidal effects on groundwater dynamics in unconfined aquifers. Hydrol Process 15:655–669CrossRefGoogle Scholar
  3. Bakker M, Schaars F (2003) The Sea Water Intrusion (SWI) package manual, version 2.0. http://www.engr.uga.edu/mbakker/swi.html. Cited 3 July 2005
  4. Bakker M, Oude Essink GHP, Langevin CD (2004) The rotating movement of three immiscible fluids: a benchmark problem. J Hydrol 287:270–278CrossRefGoogle Scholar
  5. Baskaran S, Budd KL, Larsen RM, Bauld J (2002) A groundwater quality assessment of the lower Pioneer catchment, Qld. Department of Agriculture, Fisheries and Forestry, Bureau of Rural Sciences, Canberra, AustraliaGoogle Scholar
  6. Bedford K (1978) Report on groundwater resources: Pioneer Valley. Queensland Irrigation and Water Supply Commission, Queensland Government, Brisbane, Australia, p 197Google Scholar
  7. Bedford K (1982) Aspects of the hydrogeology of some north Queensland aquifers. Water Resources Commission, Queensland Government, Brisbane, Australia, p 96Google Scholar
  8. Bond LD, Bredehoeft JD (1987) Origins of seawater intrusion in a coastal aquifer: a case study of the Pajaro Valley, California. J Hydrol 92:363–388CrossRefGoogle Scholar
  9. Brady MM, Kunkel LA (2003) A practical technique for quantifying drainage porosity. In: Proceedings of 2003 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment, and Remediation, 20–22 August, 2003, Costa Mesa, USAGoogle Scholar
  10. Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24:755–769Google Scholar
  11. Diersch HJG, Kolditz O (2002) Variable-density flow and transport in porous media: approaches and challenges. Adv Water Resour 25:899–944CrossRefGoogle Scholar
  12. Doherty J (2004) Manual for PEST: 5th edition. Watermark Numerical Computing, Australia. Available from http://www.sspa.com/pest. Cited 15 January 2005
  13. Driscoll FG (1989) Groundwater and wells, 2nd edn. Johnson Filtration Systems Inc, MinnesotaGoogle Scholar
  14. Gassama N, Violette S, D’Ozouville N, Dia A, Jendrzejewski N (2003) Multiple origin of water salinization in a coastal aquifer, Bay of Bengal. In: Hydrology of the Mediterranean and semiarid regions, IAHS Publ. No. 278, IAHS, Wallingford, UK, pp 471–476Google Scholar
  15. Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, Hawaii, USA. Hydrogeol J 13:436–450CrossRefGoogle Scholar
  16. Glover RE (1964) The pattern of fresh-water flow in a coastal aquifer. In: Sea water in coastal aquifers. Geol Surv Water-Supply Pap 1613:32–35Google Scholar
  17. Gourlay MR, Hacker JLF (1986) Pioneer River estuary sedimentation studies. Department of Civil Engineering, University of Queensland, Brisbane, Australia, p 207Google Scholar
  18. Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow: techniques of water-resources investigations, vol 6, Chapt A7, USGS, Reston, VA, p 77Google Scholar
  19. Guvanasen V, Wade SC, Barcelo MD (2000) Simulation of regional ground water flow and salt water intrusion in Hernando County, Florida. Ground Water 38:772–783CrossRefGoogle Scholar
  20. Harbaugh AW, McDonald MG (1996) Programmer’s documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model. US Geological Survey Open-File Report 96–486, USGS, Reston, VA, p 220Google Scholar
  21. Hassan A, Chapman J, Pohlmann K (2003) Uncertainty analysis of seawater intrusion and implications for radionuclide transport at Amchitka Island’s underground nuclear tests. In: Cheng AD, Ouazar D (eds) Coastal aquifer management: monitoring, modeling, and case studies. Lewis, Boca Raton, FL, pp 207–231Google Scholar
  22. Hem JD (1989) Study and interpretation of the chemical characteristics in natural water, 3rd edn. Unites States Geological Survey Water-Supply Paper 2254, Washington, DCGoogle Scholar
  23. Henry HR (1964) Effects of dispersion on salt encroachment in coastal aquifers. In: Sea water in coastal aquifers. US Geological Survey Water-Supply Paper 1613-C, USGS, Reston, VA, pp 70–84Google Scholar
  24. Hunt B (1998) Contaminant source solutions with scale-dependent dispersivities. J Hydrol Eng 3:268–275CrossRefGoogle Scholar
  25. Huyakorn PS, Anderson PF, Mercer JW, White WO Jr (1987) Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resour Res 23:293–312CrossRefGoogle Scholar
  26. HydroGeoLogic Inc. (1994) DSTRAM: density-dependent solute transport analysis model-Documentation and user’s guide, Version 4.1., HydroGeoLogic Inc., Herndon, VAGoogle Scholar
  27. HydroGeoLogic Inc. (2003) MODHMS software (Version 2.0) documentation. Volume I: groundwater flow modules, Volume II: transport modules, Volume III: surface water flow modules. HydroGeoLogic Inc., Herndon, VAGoogle Scholar
  28. Jensen AR (1972) Mackay 1:250 000 geological series explanation notes. Bureau of Mineral Resources, Canberra, AustraliaGoogle Scholar
  29. Johannsen K, Kinzelbach W, Oswald S, Wittum G (2002) The saltpool benchmark problem: numerical simulation of saltwater upcoming in a porous medium. Adv Water Resour 25(3):335–348CrossRefGoogle Scholar
  30. Jones BF, Vengosh A, Rosenthal E, Yechieli Y (1999) Geochemical investigations. In: Bear J, Cheng AD-D, Sorek S, Herrera I, Ouazar D (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dordrecht, pp 51–71Google Scholar
  31. Kabbour BB, Zouhri L, Mania J (2005) Overexploitation and continuous drought effects on groundwater yield and marine intrusion: considerations arising from the modelling of Mamora coastal aquifer, Morocco. Hydrol Process 19:3765–3782CrossRefGoogle Scholar
  32. Kim Y, Lee K-S, Koh D-C, Lee D-H, Lee S-G, Park W-B, Koh G-W, Woo N-C (2003) Hydrogeochemical and isotopic evidence of groundwater salinisation in a coastal aquifer: a case study in Jeju volcanic island, Korea. J Hydrol 270:282–294CrossRefGoogle Scholar
  33. Kuhanesan S, Durick AM, Werner AD, Weeks SW, Murphy SF (2005) Report 3: numerical modelling of the Pioneer Valley groundwater flow system. Groundwater Amendment to the Pioneer Valley Water Resources Plan Project. Department of Natural Resources and Mines, Queensland Government, Brisbane, p 86Google Scholar
  34. Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water 41:758–771CrossRefGoogle Scholar
  35. Langevin CD, Oude Essink GHP, Panday S, Bakker M, Prommer H, Swain ED, Jones W, Beach M, Barcelo M (2003) MODFLOW-based tools for simulation of variable-density groundwater flow. In: Cheng AHD, Ouazar D (eds) Coastal aquifer management: monitoring, modeling, and case studies. CRC Press, Boca Raton, FL, pp 49–76Google Scholar
  36. Mantoglou A (2003) Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resour Res 39:SBH51–SBH512CrossRefGoogle Scholar
  37. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of water-resources investigations of the United States Geological Survey, vol 6 Chapt A1. US Geological Survey, Reston, USAGoogle Scholar
  38. McKenna SA, Doherty J, Hart DB (2003) Non-uniqueness of inverse transmissivity field calibration and predictive transport modelling. J Hydrol 281:265–280CrossRefGoogle Scholar
  39. McMahon GA (2004) An integrated hydrogeological/hydrogeochemical approach to characterising groundwater zonations within a Quaternary coastal deltaic aquifer: The Burdekin River Delta, northern Queensland. PhD Thesis, Queensland University of Technology, Brisbane, AustraliaGoogle Scholar
  40. McMahon GA, Cox ME, McDonell (2005) Conceptualising seawater intrusion processes in Queensland coastal aquifers by use of cumulative frequency distribution curves. In: Acworth, Macky, Merrick (eds) CD Proceedings, Where Waters Meet International Conference, Auckland, 29 November–1 December 2005. ISBN 0-473-10627-2, New Zealand Hydrological Society, WellingtonGoogle Scholar
  41. Murphy SF, Sorensen RC (2000) Develop a water resource management strategy for the Mackay coastal aquifer system. Department of Natural Resources, Queensland Government, Mackay, Australia, p 62Google Scholar
  42. Murphy SF, Kuhanesan S, Foster LH, Durick AM (2005) Report 1: Conceptualisation of groundwater resources for the Pioneer Valley flow model. Groundwater amendment to the Pioneer Valley Water Resources Plan. Department of Natural Resources and Mines, Queensland Government, Brisbane, Australia, p 134Google Scholar
  43. Nielsen P (1990) Tidal dynamics of the water table in beaches. Water Resour Res 26:2127–2135CrossRefGoogle Scholar
  44. Nielsen P (1999) Groundwater dynamics and salinity in coastal barriers. J Coast Res 15:732–740Google Scholar
  45. Neilson-Welch L, Smith L (2001) Saline water intrusion adjacent to the Fraser River, Richmond, British Columbia. Can Geotech J 38:67–82CrossRefGoogle Scholar
  46. NR&M (2003) Information Report: Pioneer Valley proposal to prepare an amending draft water resource plan. Water planning Group of the Department of Natural Resources and Mines, Queensland Government, Brisbane, Australia, p 51Google Scholar
  47. Oude Essink GHP (1998) MOC3D adapted to simulate 3D density-dependent groundwater flow. In: Proceedings of the MODFLOW 98 Conference, Golden, CO, pp 291–303Google Scholar
  48. Oude Essink GHP (2001) Salt water intrusion in a three-dimensional groundwater system in The Netherlands: a numerical study. Transp Porous Media 43:137–158CrossRefGoogle Scholar
  49. Panday S, Huyakorn PS (2004) A fully coupled physically-based spatially-distributed model for evaluating surface/subsurface flow. Adv Water Resour 27:361–382CrossRefGoogle Scholar
  50. Park CH, Aral MM (2004) Multi-objective optimization of pumping rates and well placement in coastal aquifers. J Hydrol 290:80–99CrossRefGoogle Scholar
  51. Park SC, Yun ST, Chae GT, Yoo IS, Shin KS, Heo CH, Lee SK (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313(3–4):182CrossRefGoogle Scholar
  52. Pattle Delamore Partners Ltd (2002) Groundwater model audit guidelines: prepared for the Ministry for the Environment, New Zealand Government, Auckland, p 225Google Scholar
  53. Post VEA (2004) Groundwater salinization processes in the coastal area of the Netherlands due to transgressions during the Holocene. PhD Thesis, Vrije University, AmsterdamGoogle Scholar
  54. Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems: a historical perspective. J Hydrol 80:125–160CrossRefGoogle Scholar
  55. Richter BC, Kreitler CW (1993) Geochemical techniques for identifying sources of ground-water salinisation. CRC Press, Boca Raton, FLGoogle Scholar
  56. Sadeg SA, Karahanoglu N (2001) Numerical assessment of seawater intrusion in the Tripoli region, Libya. Environ Geol 40:1151–1168CrossRefGoogle Scholar
  57. Schincariol RA, Schwartz FW, Mendoza CA (1994) On the generation of instabilities in variable density flow. Water Resour Res 30(4):913–927CrossRefGoogle Scholar
  58. Sherif MM, Hamza KI (2001) Mitigation of seawater intrusion by pumping brackish water. Transp Porous Media 43:29–44CrossRefGoogle Scholar
  59. Sherif MM, Singh VP (2002) Effect of groundwater pumping on seawater intrusion in coastal aquifers. J Agr Mar Sci 7:61–67Google Scholar
  60. Shoemaker WB (2004) Important observations and parameters for a salt water intrusion model. Ground Water 42:829–840CrossRefGoogle Scholar
  61. Souza WR, Voss CI (1987) Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation. J Hydrol 92:17–41CrossRefGoogle Scholar
  62. van Dam JC (1999) Exploitation, restoration and management. In: Bear J, Cheng AD-D, Sorek S, Herrera I, Ouazar D (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices. Kluwer, Dordrecht, pp 73–125Google Scholar
  63. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  64. Voss CI, Provost AM (2002) SUTRA-a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Open-File Report 02-4231, USGS, Reston, VA, p 250Google Scholar
  65. Weight WD, Sonderegger JL (2000) Manual of applied field hydrogeology. McGraw-Hill, New York, p 609Google Scholar
  66. Werner AD (2004) The interaction between a tidal estuary and a shallow unconfined aquifer: saltwater intrusion and environmental impacts in the riparian zone. PhD Thesis, University of Queensland, Brisbane, AustraliaGoogle Scholar
  67. Werner AD, Reading LP, Murphy SF, McDonell ML, McMahon GA (2005) Seawater intrusion in the Pioneer Valley, north-eastern Australia: conceptualisation and implications for modelling. In: Acworth, Macky, Merrick (eds) CD Proceedings, Where Waters Meet International Conference, Auckland, 29 November–1 December 2005, ISBN 0-473-10627-2, New Zealand Hydrological Society, WellingtonGoogle Scholar
  68. Yakirevich A, Melloul A, Sorek S, Shaath S, Borisov C (1998) Simulation of seawater intrusion into the Khan Yunis area of the Gaza Strip coastal aquifer. Hydrogeol J 6:549–559CrossRefGoogle Scholar
  69. Zhang Q, Volker RE, Lockington DA (2004) Numerical investigation of seawater intrusion at Gooburrum, Bundaberg, Queensland, Australia. Hydrogeol J 12:674–687CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Natural Resources and MinesNatural Resource SciencesBrisbaneAustralia
  2. 2.Department of Civil EngineeringUniversity of QueenslandSt LuciaAustralia

Personalised recommendations