Hydrogeology Journal

, Volume 14, Issue 6, pp 868–881 | Cite as

Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK

  • John Gunn
  • Simon H. BottrellEmail author
  • David J. Lowe
  • Stephen R. H. Worthington


Thermal waters potentially provide information on geochemical processes acting deep within aquifers. New isotopic data on groundwater sulphate, inorganic carbon and strontium in thermal and non-thermal waters of a major limestone aquifer system in Derbyshire, England, UK, are used to constrain sulphate sources and groundwater evolution. Shallow groundwaters gain sulphate from oxidation of sulphide minerals and have relatively 13C-depleted dissolved inorganic carbon (DIC). Thermal waters have relatively high Sr/Ca and more 13C-enriched DIC as a result of increased water–rock interaction. In other respects, the thermal waters define two distinct groups. Thermal waters rising at Buxton have higher Mg, Mn and 87Sr/86Sr and lower Ca and SO4, indicating flow from deep sandstone aquifers via a high permeability pathway in the limestone. By contrast, Matlock-type waters (97% of the thermal flux) have elevated sulphate concentrations derived from interaction with buried evaporites, with no chemical evidence for flow below the limestone. About 5% of the limestone area's groundwater flows to the Matlock group springs via deep regional flow and the remainder flows via local shallow paths to many non-thermal springs. Gypsum dissolution has produced significant tertiary porosity and tertiary permeability in the carbonate aquifer and this is an essential precursor to the development of karstic drainage.


England Hydrochemistry Karst Stable isotopes Thermal conditions 


Les eaux thermales peuvent apporter des informations sur les processus géochimiques dans les aquifères profonds. De nouvelles données isotopiques sur les sulfates présents dans les eaux souterraines, le carbone inorganique et le strontium dans les eaux thermales et non thermales d'un système aquifère calcaire majeur dans le Derbyshire, Angleterre, Royaume Uni, sont utilisées pour comprendre les sources de sulfates et l'évolution des eaux souterraines. Les eaux souterraines phréatique s'enrichissent en sulfate via l'oxydation des minéraux sulfatés et ont un Carbone Inorganique Dissous (DIC) relativement appauvri en13C. Les eaux thermales ont un rapport Sr/Ca relativement plus élevé et un DIC plus enrichi en13C, du fait de l'interaction accrue des eaux avec les roches. En d'autres mots, les eaux thermales définissent deux groupes distincts. Les eaux thermales remontant à Buxton ont un Mg, un Mn et un rapport 87Sr/86Sr plus hauts, mais un Ca et SO4 plus faible, indiquant un écoulement à travers les zones perméables des aquifers gréseux. Par contraste, les eaux du type de Matlock (97% du flux thermique), possèdent des concentrations élevées en sulfates, provenant de l'interaction des eaux avec les évaporites enfouies, tandis qu'il n'existe aucune évidence chimique d'un écoulement sous les calcaires. Sur environ 5% de la surface des calcaires, les eaux souterraines alimentent des sources non-thermales. La dissolution du Gypse a produit une porosité tertiaire significative et une perméabilité dans les aquifères calcaires, et ceci est un précurseur essentiel au développement du drainage karstique.


Las aguas termales potencialmente proporcionan información sobre procesos geoquímicos que actúan a profundidad en acuíferos. Nuevos datos isotópicos de sulfatos, carbón inorgánico y estroncio en aguas termales y no-termales de un acuífero importante de caliza en Derbyshire, Inglaterra se utilizan para delinear las fuentes de sulfato y la evolución de aguas subterráneas.

Las aguas subterráneas no muy profundas adquieren sulfato a través de la oxidación de minerales de sulfuro y poseen carbón inorgánico disuelto (DIC) relativamente deplatado de 13C. Las aguas termales muestran un ratio Sr/Ca relativamente alto y poseen (DIC) más enriquecido en13C, como resultado de la mayor interacción de roca-agua. En otros aspectos, los aguas termales definen dos grupos distintivos. Las aguas termales que ascienden en Buxton tienen mas Mg, Mn y 87Sr/86Sr y menos Ca and SO4, indicando flujo de acuíferos de areniscas profundas por un sendero de alta permeabilidad en la caliza.

En contraste el tipo de agua - Matlock (97% del flujo termal) posee altas concentraciones de sulfato, derivado por interacción con evaporitas enterradas, sin evidencia química de flujo debajo de la caliza. Aproximadamente 5% del agua del área de la caliza se fluye al grupo de manantiales de Matlock a través de un flujo regional profundo y el resto fluye por senderos locales poco profundos a muchos de los manantiales no-termales. La disolución de yeso ha producido porosidad terciaria importante así como permeabilidad en el acuífero de carbonato y este es un precursor esencial del desarrollo de drenaje kárstico.



This work was supported by NERC (Natural Environment Research Council) via an MSc studentship to Neil Webber at Leeds during the early part of this work. Later support was by a University of Huddersfield research studentship to Neil who collected water samples and undertook most of the laboratory analyses. Stable isotope facilities for groundwater studies were funded via NERC research grants GR3/7839 and GR3/8134 to SHB. We thank Bob Cliff of the University of Leeds for the Sr isotopic analyses and Rob Newton and Dave Hatfield for their expert assistance in the Leeds stable isotope lab. Critical and constructive comments by Tim Atkinson and Mike Edmunds have helped us to improve this work.


  1. Aitkenhead N, Chisholm JI (1982) A standard nomenclature for the Dinantian formations of the Peak District of Derbyshire and Staffordshire. Report of the Institute of Geological Sciences, No. 82/8Google Scholar
  2. Aitkenhead N, Chisholm JI, Stevenson IP (1985) Geology of the country around Buxton, Leek and Bakewell. Memoir of the British Geological Survey, Sheet 111Google Scholar
  3. Barker JA, Downing RA, Gray DA, Findlay J, Kellaway GA, Parker RH, Rollin KE (2000) Hydrogeothermal studies in the United Kingdom. Q J Eng Geol Hydrogeol 33:41–58CrossRefGoogle Scholar
  4. Bishop PK (1990) Precipitation of dissolved carbonate species from natural waters for δ13C analysis—a critical appraisal. Chem Geol 80:251–259Google Scholar
  5. Bishop PK, Lloyd JW (1990) Chemical and isotopic evidence for hydrochemical processes occurring in the Lincolnshire Limestone. J Hydrol 121:293–320CrossRefGoogle Scholar
  6. Bottrell SH, Novak M (1997) Sulphur isotopic study of two pristine Sphagnum bogs in the western British Isles. J Ecol 85:125–132CrossRefGoogle Scholar
  7. Bottrell SH, Webber N, Gunn J, Worthington SRH (2000) The geochemistry of sulphur in a mixed allogenic-autogenic karst catchment, Castleton, Derbyshire, UK. Earth Surf Process Landforms 25:155–165CrossRefGoogle Scholar
  8. Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519CrossRefGoogle Scholar
  9. Chambers LA, Trudinger PA (1979) Microbiological fractionation of stable sulphur isotopes: a review and critique. Geomicrobiol J 3:249–293CrossRefGoogle Scholar
  10. Christopher NSJ, Wilcock JD (1981) Geochemical controls on the composition of limestone groundwaters with special reference to Derbyshire. Trans Brit Cave Res Assoc 8:135–158Google Scholar
  11. Christopher NSJ, Beck JS, Mellors PT (1977) Hydrology—water in the limestone. In: Ford TD (ed) Limestones and caves of the Peak District, GeoAbstracts, Norwich, pp 185–230Google Scholar
  12. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260CrossRefGoogle Scholar
  13. Cope FW (1973) Woo Dale Borehole near Buxton, Derbyshire. Nature 243:29–30CrossRefGoogle Scholar
  14. Cope FW (1979) The age of the volcanic rocks in the Woo Dale Borehole, Derbyshire. Geol Mag 116:319–320.CrossRefGoogle Scholar
  15. Coulson JP, Bottrell SH, Lee JA (2005). Recreating atmospheric sulphur deposition histories from peat stratigraphy: Diagenetic conditions required for signal preservation and reconstruction of past sulphur deposition in the Derbyshire Peak District, UKGoogle Scholar
  16. Crabtree RW, Trudgill ST (1984) Hydrochemical budgets for a Magnesian limestone catchment in lowland England. J Hydrol 74:67–79CrossRefGoogle Scholar
  17. Crowley SF, Bottrell SH, McCarthy MDB, Ward J, Young B (1997) δ34S of Lower Carboniferous anhydrite, Cumbria and its implications for barite mineralization in the northern Pennines. J Geol Soc London 154:597–600Google Scholar
  18. Downing RA (1967) The geochemistry of groundwater in the Carboniferous Limestone in Derbyshire and the East Midlands. Bull Geol Surv Great Britain No. 27, 289–307Google Scholar
  19. Downing RA (1970) The hydrogeology of the Trent River basin. Water Supply Papers of the Institute of Geological Sciences, Hydrogeological Report No. 5. 104 ppGoogle Scholar
  20. Downing RA, Gray DA (eds) (1986) Geothermal energy: The potential in the United Kingdom. HMSO, LondonGoogle Scholar
  21. Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resou Res 32:2923–2935.CrossRefGoogle Scholar
  22. Dunham KC (1973) A recent deep borehole near Eyam, Derbyshire. Nature 241:84–85Google Scholar
  23. Edmunds WM (1971) Hydrogeochemistry of groundwaters in the Derbyshire Dome, with special reference to trace constituents. Report of the Institute of Geological Sciences, No.71/7.Google Scholar
  24. Edmunds WM, Smedley PL, Spiro B (1995). Controls on the geochemistry of sulphur in the East Midlands Triassic aquifer, UK. In: Isotopes in water resources management, vol. 2. Vienna, International Atomic Energy Agency, pp 107–122.Google Scholar
  25. Ewebank G, Manning DAC, Abbot GD (1995) The relationship between bitumens and mineralization in the South Pennine Orefield, central England. J Geol Soc London 152:751–765Google Scholar
  26. Gabrovšek F, Dreybrodt W (2001) A model of the early evolution of karst aquifers in limestone in the dimensions of length and depth. J Hydrol 240:206–224CrossRefGoogle Scholar
  27. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536CrossRefGoogle Scholar
  28. Gonfiantini R (1984) Advisory group meeting on stable isotope reference standards for geochemical and hydrological investigations. Report of the Director General, IAEA. International Atomic Energy Agency, Vienna, 46 pp.Google Scholar
  29. Gunn J, Lowe DJ, Waltham AC (1998) The karst geomorphology and hydrogeology of Great Britain. In: Daoxian Y, Zaihua L (eds) Global karst correlation. VSP, The Netherlands, pp 109–135.Google Scholar
  30. Halas S, Shakur A, Krouse HR (1982) A modified method for SO2 extraction from sulphates for isotopic analysis using NaPO3. Isotopenpraxis 18:11–13Google Scholar
  31. Hanna RB, Rajaram H (1998) Influence of aperture variability on dissolutional growth of fissures in karst formations. Water Resour Res 34:2843–2853CrossRefGoogle Scholar
  32. Institute of Geological Sciences (1978) IGS boreholes 1977. Report of the Institute of Geological Sciences, No.78/21Google Scholar
  33. Krothe NC, Libra RD (1983) Sulfur isotopes and hydrochemical variations in spring waters of southern Indiana, USA. J Hydrol 61:267–283.CrossRefGoogle Scholar
  34. Langmuir D (1971) The geochemistry of carbonate groundwaters in central Pennsylvania. Geochimica et Cosmochimica Acta 35:1023–1045CrossRefGoogle Scholar
  35. Lowe DJ (2000) Role of stratigraphic elements in speleogenesis: The speleoinception concept. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds), Speleogenesis. Evolution of karst aquifers. National Speleological Society, Huntsville, Alabama, pp 65–76Google Scholar
  36. McArdle NC, Liss PS (1996) Isotopes and atmospheric sulphur. Atmos Environ 29:2553–2556CrossRefGoogle Scholar
  37. McCarthy MDB, Newton RJ, Bottrell SH (1997) Oxygen isotopic compositions of sulphate from coals: implications for primary sulphate sources and secondary weathering processes. Fuel 77:677–682CrossRefGoogle Scholar
  38. McCrea JM (1950) On the isotope chemistry of carbonates and a palaeotemperature scale. J Chem Phys 18:849–857CrossRefGoogle Scholar
  39. Moncaster SJ, Bottrell SH, Tellam JH, Lloyd JW (1992) Sulphur isotope ratios as tracers of natural and anthropogenic sulphur in the Lincolnshire Limestone aquifer, eastern England. In: Kharaka Y, Maest AS (eds), Water-rock interaction. Balkema, Rotterdam, pp 813–816Google Scholar
  40. Moncaster SJ, Bottrell SH, Tellam JH, Lloyd JW, Konhauser KO (2000) Migration and attenuation of agrochemical pollutants: insights from isotopic analysis of groundwater sulphate. J Contam Hydrol 43:147–163CrossRefGoogle Scholar
  41. Nicholson RV, Gillham RW, Reardon EJ (1988) Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochimica et Cosmochimica Acta 52:1077–1085CrossRefGoogle Scholar
  42. Oxburgh ER, Richardson SW, Wright SM, Jones MGW, Penney SR, Watson SA, Bloomer JR (1980). Heat flow pattern in the United Kingdom. In: Strub AS, Ungemach P (eds), Advances in European geothermal research, Dordrect, Reidel, pp 447–455Google Scholar
  43. Pentecost A (1999) The origin and development of the travertines and associated thermal waters at Matlock Bath, Derbyshire. Proc Geol Assoc 110:217–232CrossRefGoogle Scholar
  44. Robinson BW, Ineson PR (1979) Sulphur, oxygen and carbon isotope investigations of lead-zinc-barite-fluorite-calcite mineralization, Derbyshire, England. Trans Inst Min Metall 88:B107–B117Google Scholar
  45. Smith K, Smith NJP, Holliday DW (1985) The deep structure of Derbyshire. Geol J 20:215–225CrossRefGoogle Scholar
  46. Strebel O, Bottcher J, Fritz P (1990) Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J Hydrol 121:155–172CrossRefGoogle Scholar
  47. Taylor SR (1983) A stable isotope study of the Mercia Mudstones (Keuper Marl) and associated sulphate horizons in the English Midlands. Sedimentology 30:11–31CrossRefGoogle Scholar
  48. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812CrossRefGoogle Scholar
  49. Turcotte DL, Schubert G (1982) Geodynamics. In: Applications of continuum physics to geological problems. Wiley, New YorkGoogle Scholar
  50. Van Stempvoort DR, Krouse HR (1994). Controls of δ18O in sulfate: review of experimental data and application to specific environments. In: Alpers CN, Blowes DW (eds), Environmental geochemistry of sulfide oxidation, American Chemical Society, Washington, DC, pp 446–480Google Scholar
  51. Waters CN, Browne MAE, Dean MT, Powell JH (in press) BGS Lithostratigraphical framework for Carboniferous successions of Great Britain (Onshore). British Geological Survey Research Report, RR/05/06Google Scholar
  52. Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: An important factor in conduit initiation? Environ Geol 25:9–15CrossRefGoogle Scholar
  53. Worthington SRH, Smart CC (2004) Groundwater in karst: conceptual models. In: Gunn J (ed), Encyclopedia of caves and karst science, Fitzroy Dearborn, London & New York, pp 399–401Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • John Gunn
    • 1
  • Simon H. Bottrell
    • 2
    Email author
  • David J. Lowe
    • 1
  • Stephen R. H. Worthington
    • 3
  1. 1.Limestone Research GroupUniversity of HuddersfieldQueensgateUK
  2. 2.Earth SciencesSchool of Earth and Environment, University of LeedsLeedsUK
  3. 3.Worthington GroundwaterDundasCanada

Personalised recommendations