Hydrogeology Journal

, Volume 14, Issue 5, pp 637–647 | Cite as

Climate change impacts on groundwater recharge- uncertainty, shortcomings, and the way forward?

Paper

Abstract

An integrated approach to assessing the regional impacts of climate and socio-economic change on groundwater recharge is described from East Anglia, UK. Many factors affect future groundwater recharge including changed precipitation and temperature regimes, coastal flooding, urbanization, woodland establishment, and changes in cropping and rotations.

Important sources of uncertainty and shortcomings in recharge estimation are discussed in the light of the results. The uncertainty in, and importance of, socio-economic scenarios in exploring the consequences of unknown future changes are highlighted. Changes to soil properties are occurring over a range of time scales, such that the soils of the future may not have the same infiltration properties as existing soils. The potential implications involved in assuming unchanging soil properties are described.

To focus on the direct impacts of climate change is to neglect the potentially important role of policy, societal values and economic processes in shaping the landscape above aquifers. If the likely consequences of future changes of groundwater recharge, resulting from both climate and socio-economic change, are to be assessed, hydrogeologists must increasingly work with researchers from other disciplines, such as socio-economists, agricultural modellers and soil scientists.

Keywords

Groundwater recharge Climate change Socio-economic aspects Numerical modelling Groundwater management 

Résumé

Une approche intégrée pour réaliser le bilan des impacts climatiques et socio-économiques sur la recharge des eaux souterraines, a été mise en œuvre sur East Anglia, Royaume Uni. Plusieurs facteurs affectent la future recharge des eaux souterraines, y compris des changements dans les régimes de précipitation et de température, les inondations côtières, l’urbanisation, le reboisement, et les changement de pratiques agricoles.

D’importantes sources d’incertitudes et de défauts dans l’estimation de la recharge sont discutées à la lumière des résultats. L’incertitude et l’importance des scénarios socio-économiques permettant d’explorer les conséquences d’un futur “inconnu” sont mis en lumière. Les changements des propriétés des sols sont étudiés sur plusieurs échelles de temps, de telle manière à ce que les propriétés d’infiltration des futurs sols ne soient pas les mêmes que les sols actuels. Les implications de ces changements de propriétés de sols sont décrites.

Pour se concentrer sur les impacts directs du climat, les changements politiques, les valeurs sociales, et les modifications radicales des formations quaternaires (excavation, remblaiements) ne sont pas étudiés de manière poussée. Si les conséquences de ces futurs modifications de la recharge des eaux souterraines, résultant des changements socio-économiques et climatiques, devaient être vérifiées, les hydrogéologues devraient travailler de plus en plus avec des chercheurs d’autres disciplines, tels que des socio-économistes, des modelisateurs de l’agriculture et des spécialistes du sol.

Resumen

Se describe un enfoque integrado para evaluar los impactos regionales de cambio climático y socioeconómico en la recarga de agua subterránea en Anglia Oriental, UK. Muchos factores afectan la recarga de agua subterránea futura incluyendo precipitación y ambientes de temperatura cambiados, inundaciones costeras, urbanización, establecimiento de bosques, y cambios en cultivos y rotaciones.

Se discute fuentes importantes de incertidumbre y limitaciones en la estimación de recarga en base a los resultados. Se destaca la incertidumbre en, y la importancia de, escenarios socioeconómicos en explorar las consecuencias de futuros desconocidos. Los cambios en propiedades de suelo ocurren en un rango de escalas de tiempo de modo que los suelos del futuro pueden no tener las mismas propiedades de infiltración que los suelos existentes. Se describen las implicaciones potenciales involucradas en asumir que las propiedades de suelos permanecen sin cambio. El enfocarse en los impactos directos de cambio climático conlleva a despreciar el papel potencialmente importante que tienen la política, los valores sociales, y procesos económicos en la configuración del paisaje que se encuentra encima de los acuíferos. Si se trata de evaluar las consecuencias probables de cambios futuros en la recarga del agua subterránea que resultan tanto de cambios climáticos como socioeconómicos los hidrogeólogos tienen que trabajar cada vez más con investigadores de otras disciplinas tal como socio-economistas, modelizadores agrícolas y científicos del suelo.

Notes

Acknowledgements

RegIS was funded by the Department of Environment, Food and Rural Affairs (Project No. CC0337) and the UK Water Industries Research within the UK Climate Impacts Programme. Contributions in kind were also provided by the Environment Agency and English Nature. The contributions of the RegIS team members at Silsoe Research Institute, Environmental Change Institute (University of Oxford), Flood Hazard Research Centre (Middlesex University), Université Catholique de Louvain and University of Manchester are gratefully acknowledged

References

  1. Alderwish A, Al-Eryani M (1999) An approach for assessing the vulnerability of the water resources of Yemen to climate change. Clim Res 12(2–3):85–89Google Scholar
  2. Ankeny MD, Kaspar TC, Prieksat MA (1995) Traffic effects on water infiltration in chisel plough and no-till systems. Soil Sci Am J 59(1):200–204CrossRefGoogle Scholar
  3. Argent RM (2004) An overview of model integration for environmental applications—components, frameworks and semantics. Envir Modell Softw 19(3):219–234CrossRefGoogle Scholar
  4. Arnell NW (1998) Climate change and water resources in Britain. Clim Change 39(1):83–110CrossRefGoogle Scholar
  5. Arnell A, Jenkins A, George DG (1994) The implication of climate change for the National Rivers Authority. National Rivers Authority R&D Report 12, HMSO, LondonGoogle Scholar
  6. Baron JS, Poff NL, Angermeier PL, Dahm CN, Gleick PH, Hairston NG, Jackson RB, Johnston CA, Richter BD, Steinman AD (2002) Meeting ecological and societal needs for freshwater. Ecol Appl 12(5):1247–1260Google Scholar
  7. Bobba AG (2002) Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrol Sci J-J Sci Hydrol 47:S67–S80Google Scholar
  8. Boorman DB, Hollis JM, Lilly A (1995) Hydrology of Soil Types: A Hydrologically based classification of the soils of the UK. Institute of Hydrology Report No. 126, Wallingford, UKGoogle Scholar
  9. Bowman RA, Nielsen DC, Vigil MF, Aiken RM (2000) Effects of sunflower on soil quality indicators and subsequent wheat yield. Soil Sci 165(6):516–522CrossRefGoogle Scholar
  10. Bragg OM (2002) Hydrology of peat-forming wetlands in Scotland. Sci Total Envir 294(1–3):111–129CrossRefGoogle Scholar
  11. Cannell MGR, Milne R, Hargreaves KJ, Brown TAW, Cruickshank MM, Bradley RI, Spencer T, Hope D, Billett MF, Adger WN, Subak S (1999) National inventories of terrestrial carbon sources and sinks: The UK experience. Climatic Change 42(3):505–530CrossRefGoogle Scholar
  12. Cannell RQ, Hawes JD (1994) Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Till Res 30:245–282CrossRefGoogle Scholar
  13. Carter TR, Porter JH, Parry ML (1992) Some implications of climatic-change for agriculture in Europe. J Exp Bot 43(253):1159–1167Google Scholar
  14. Cash DW, Moser SC (2000) Linking global and local scales: designing dynamic assessment and management processes. Glob Envir Change 10:109–120CrossRefGoogle Scholar
  15. Chambers BJ, Garwood TWD (2000) Monitoring of water erosion on arable farms in England and Wales, 1990–1994. Soil Use Manag 16(2):93–99CrossRefGoogle Scholar
  16. Chen CC, Gillig D, McCarl BA (2001) Effects of climatic change on a water dependent regional economy: A study of the Texas Edwards Aquifer. Climatic Change 49(4):397–409CrossRefGoogle Scholar
  17. Chen ZH, Grasby SE, Osadetz KG (2002) Predicting average annual groundwater levels from climatic variables: an empirical model. J Hydrol 260(1–4):102–117CrossRefGoogle Scholar
  18. Cooper DM, Wilkinson WB, Arnell NW (1995) The effects of climate changes on aquifer storage and river baseflow. Hydrol Sci J-J Sci Hydrol 40(5):615–631Google Scholar
  19. Conway D, Krol M, Alcamo J, Hulme M (1996) Future availability of water in Egypt: The interaction of global, regional, and basin scale driving forces in the Nile Basin. Ambio 25(5):336–342Google Scholar
  20. Croley TE, Luukkonen CL (2003) Potential effects of climate change on ground water in Lansing, Michigan. J Am Water Resour Assoc 39(1):149–163Google Scholar
  21. Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30(2):104–130CrossRefGoogle Scholar
  22. Davies A, Shao J, Brignall P, Bardgett RD, Parry ML, Pollock CJ (1996) Specification of climatic sensitivity of forage maize to climate change. Grass Forage Sci 51(3):306–317CrossRefGoogle Scholar
  23. Easterling WE (1997) Why regional studies are needed in the development of fullscale integrated assessment modelling of global change processes. Glob Envir Change 7(4):337–356CrossRefGoogle Scholar
  24. European Environment Agency (1998) Europe’s Environment: The Second Assessment. Elsevier Science Ltd., OxfordGoogle Scholar
  25. Feddema JJ, Freire S (2001) Soil degradation, global warming and climate impacts. Clim Res 17(2):209–216Google Scholar
  26. Gomez E, Ledoux E, Viennot P, Mignolet C, Benoit M, Bornerand C, Schott C, Mary B, Billen G, Ducharne A, Brunstein D (2003) An integrated modelling tool for nitrates transport in a hydrological system: Application to the river Seine basin. Houille Blanche-Rev Int 3:38–45CrossRefGoogle Scholar
  27. Harrison PA, Butterfield RE (1996) Effects of climate change on Europe-wide winter wheat and sunflower productivity. Climatic Res 7(3):225–241Google Scholar
  28. Hernanz JL, Lopez R, Navarrete L, Sanchez-Giron V (2002) Long-term effects of tillage systems and rotations on soil structural stability and organic carbon stratification in semiarid central Spain. Soil Till Res 66(2):129–141CrossRefGoogle Scholar
  29. Holman IP, Hiscock KM (1998) Land drainage and saline intrusion in the coastal marshes of northeast Norfolk. Quart J Engng Geol 31:47–62Google Scholar
  30. Holman IP, Hiscock KM, Chroston PN (1999) Crag aquifer characteristics and water balance for the Thurne catchment, northeast Norfolk. Quart J Engng Geol 32:365–380Google Scholar
  31. Holman IP, Loveland PJ, Najarro P (2001) ‘Integrated Impacts on Water’. In Holman IP, Loveland PJ (eds) 2001b. Regional Climate Change Impacts in East Anglia and the North West (the RegIS project). Final report of MAFF Project No. CC0337 (available from http://www.ukcip.org.uk)
  32. Holman IP, Hollis JM, Bramley ME, Thompson TRE (2003) The contribution of soil structural degradation to catchment flooding: a preliminary investigation of the 2000 floods in England and Wales. Hydrol Earth Syst Sci 7(5):754–765Google Scholar
  33. Holman IP, Rounsevell MDA, Harrison PA, Nicholls RJ, Berry PM, Audsley E, Shackley S (2005a) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: Part I Methodology. Climatic Change (in press)Google Scholar
  34. Holman IP, Nicholls RJ, Berry PM, Harrison PA, Audsley E, Shackley S, Rounsevell MDA (2005b) A regional, multi-sectoral and integrated assessment of the impacts of climate and socio-economic change in the UK: Part II Results. Climatic Change (in press)Google Scholar
  35. Hulme M, Jenkins GJ (1998) Climate Change Scenarios for the United Kingdom: Scientific Report. UK Climate Impacts Programme Technical Report No. 1, Climatic Research Unit, NorwichGoogle Scholar
  36. IPCC—Intergovernmental Panel on Climate Change (2001) Climate Change 2001: Impacts, Adaptation and Vulnerability—Contribution of Working Group II to the Third Assessment Report of IPCCGoogle Scholar
  37. Jones PD, Reid PA (2001) Assessing future changes in extreme precipitation over Britain using regional climate model integrations. Int J Climatol 21(11):1337–1356CrossRefGoogle Scholar
  38. Keating EH, Vesselinov VV, Kwicklis E, Lu ZM (2003) Coupling basin- and site-scale inverse models of the Espanola aquifer. Ground Water 41(2):200–211PubMedCrossRefGoogle Scholar
  39. Kirshen PH, (2002) Potential impacts of global warming on groundwater in eastern Massachusetts. J Water Resour Plan Manag-ASCE 128(3):216–226CrossRefGoogle Scholar
  40. Kort J, Collins M, Ditsch D (1998) A review of soil erosion potential associated with biomass crops. Biomass Bioenerg 14(4):351–359CrossRefGoogle Scholar
  41. Kruger A, Ulbrich U, Speth P (2001) Groundwater recharge in Northrhine-Westfalia predicted by a statistical model for greenhouse gas scenarios. Physics Chem Earth Part B—Hydrol Oceans Atmos 26(11–12):853–861CrossRefGoogle Scholar
  42. Leemans R (1999) Modelling for species and habitats: new opportunities for problem solving. Sci Total Envir 240(1–3):51–73CrossRefGoogle Scholar
  43. Loaiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227(1–4):173–194CrossRefGoogle Scholar
  44. Loukas A, Vasiliades L, Dalezios NR (2002) Climatic impacts on the runoff generation processes in British Columbia, Canada. Hydrol Earth Syst Sci 6(2):211–227CrossRefGoogle Scholar
  45. Loveland PJ, Webb J (2003) Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil Till Res 70(1):1–18CrossRefGoogle Scholar
  46. Meigh JR, McKenzie AA, Sene KJ (1999) A grid-based approach to water scarcity estimates for eastern and southern Africa. Water Resour Manag 13(2):85–115CrossRefGoogle Scholar
  47. Nicholls RJ, Wilson T (2001) Integrated impacts on coastal areas and river flooding. In: Holman IP, Loveland PJ (eds) Regional Climate Change Impacts in East Anglia and the North West (the RegIS project). Final report of MAFF Project No. CC0337 (available from http://www.ukcip.org.uk)
  48. O’Leary GJ (1996) The effects of conservation tillage on potential groundwater recharge. Agric Water Manag 31(1–2):65–73CrossRefGoogle Scholar
  49. Parry ML, Hossell JE, Jones PJ, Rehman T, Tranter RB, Marsch JS, Rosenzweig C, Fischer G, Carson IG, Bunce RGH (1996) Integrating global and regional analyses of the effects of climate change: a case study of land use in England and Wales. Clim Change 32:185–198CrossRefGoogle Scholar
  50. Parson EA, Granger Morgan M (2000) Chapter 3: Socioeconomic context for climate impact assessment. US National Assessment Synthesis Team Document. Public Comment DraftGoogle Scholar
  51. Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Proc 16(6):1137–1150CrossRefGoogle Scholar
  52. Pruski FF, Nearing MA (2002) Runoff and soil-loss responses to changes in precipitation: A computer simulation study. J Soil Water Cons 57(1):7–16Google Scholar
  53. Quinn NWT, Brekke LD, Miller NL, Heinzer T, Hidalgo H, Dracup JA (2004) Model integration for assessing future hydroclimate impacts on water resources, agricultural production and environmental quality in the San Joaquin Basin, California. Envir Modell Softw 19(3):305–316CrossRefGoogle Scholar
  54. Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res 43(1–2):131–167CrossRefGoogle Scholar
  55. Rounsevell MDA, Evans SP, Bullock P (1999) Climate change and agricultural soils: Impacts and adaptation. Climatic Change 43(4):683–709CrossRefGoogle Scholar
  56. Rounsevell MDA, Annetts JE, Audsley E, Mayr T, Reginster I (2003) Modelling the spatial distribution of agricultural land use at the regional scale. Agric, Ecosys Envir 95(2–3):465–479CrossRefGoogle Scholar
  57. Shackley S, Deanwood R (2003) Constructing social futures for climate-change impacts and response studies: building qualitative and quantitative scenarios with the participation of stakeholders. Clim Res 24(1):71–90Google Scholar
  58. Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Proc 13(8):1277–1287CrossRefGoogle Scholar
  59. Sophocleous M (2002) Interactions between groundwater and surface water: the state of science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  60. Stephens W, Hess TM, Knox J (2001) Review of the effects of energy crops on hydrology. Cranfield University report for Ministry of Agriculture, Fisheries and Food. Available from http://www.silsoe.cranfield.ac.uk/iwe/research/src.htm
  61. Tebrugge F, During RA (1999) Reducing tillage intensity - a review of results from a long-term study in Germany. Soil Till Res 53(1):15–28CrossRefGoogle Scholar
  62. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soil. J Soil Sci 33:141–164CrossRefGoogle Scholar
  63. Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study on anthropogenic climate change: Changes in extremes of the hydrological cycle. Int J Climatol 22(7):755–777CrossRefGoogle Scholar
  64. Weatherhead EK, Knox JW (1999) Predicting and mapping the future demand for irrigation water in England and Wales. Agric Water Manag 43:203–218CrossRefGoogle Scholar
  65. Webb J. Loveland PJ, Chambers BJ, Mitchell R, Garwood T (2001) The impact of modern farming practices on soil fertility and quality in England and Wales. J Agric Sci 137(2):127–138CrossRefGoogle Scholar
  66. Yusoff I, Hiscock KM, Conway D (2002) Simulation of the impacts of climate change on groundwater resources in eastern England. In: Hiscock KM, Rivett MO, Davidson RM (eds) Sustainable groundwater development. Geological Society, London, Spec Publ 193:325–344Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Water and EnvironmentCranfield UniversitySilsoeUK

Personalised recommendations