Advertisement

Hydrogeology Journal

, 14:603 | Cite as

Small scale study of groundwater flow in a fractured carbonate-rock aquifer at the St-Eustache quarry, Québec, Canada

  • Jean-Michel LemieuxEmail author
  • René Therrien
  • Donna Kirkwood
Report

Abstract

A small-scale hydrogeological study was conducted in a fractured carbonate-rock aquifer located in a quarry to relate groundwater flow to the fracture network. The field study in the St-Eustache quarry, which integrates structural surveys, well logging and hydraulic tests, showed that the most important features that affect groundwater flow in the sedimentary aquifer are high hydraulic conductivity horizontal bedding planes. Vertical fractures are abundant in the quarry and throughout the region, but they have a minor effect on groundwater flow. To have a significant impact on the flow regime and lead to vertical groundwater flow, the permeability of all vertical joints need to be enhanced compared to what was generally observed at the site. Such an increase in permeability could potentially occur where dissolution and fracturing is more intense or at stress release locations such as near the surface in the quarry.

Keywords

Fractured rocks Sedimentary rocks Carbonate-rock aquifer Bedding planes 

Résumé

Une étude hydrogéologique à petite échelle a été réalisée dans un aquifère carbonaté fracturé situé dans une carrière afin de comprendre la relation entre l’écoulement de l’eau souterraine et le réseau de fractures. Cette étude ponctuelle qui intègre des observations géologiques, diagraphiques et hydrogéologiques a permis de mettre en évidence l’importance des plans de litage diagénétiques horizontaux pour l’écoulement de l’eau souterraine dans l’aquifère sédimentaire de la carrière St-Eustache. Les fractures verticales, très abondantes à la carrière St-Eustache et dans l’ensemble de la région, ont une influence mineure sur l’écoulement de l’eau souterraine. Afin d’avoir une influence majeure sur l’écoulement et ainsi faciliter un écoulement vertical, la perméabilité des fractures verticales doit être beaucoup plus élevée que ce qui est observé sur le site. Une augmentation de la perméabilité significative de la perméabilité pourrait être possible là où la dissolution et la fracturation sont plus intenses ainsi qu’à l’intérieur de zones où les contraintes sont plus faibles, comme à la surface de la carrière.

Resumen

Se llevó a cabo un estudio hidrogeológico en pequeña escala en un acuífero carbonatado fracturado localizado en una cantera con objeto de relacionar el flujo de agua subterránea con la red de fracturas. El estudio de campo en la cantera de San Eustaquio, el cual integra levantamientos estructurales, registro de pozos y pruebas hidráulicas, mostró que las características más importantes que afectan el flujo de agua subterránea en los acuíferos sedimentarios son planos de estratificación horizontal con alta conductividad hidráulica. Las fracturas verticales son abundantes en la cantera y en toda la región pero tienen efectos menores en el flujo de agua subterránea. Para que las fracturas verticales tengan un impacto significativo en el entorno de flujo y favorezcan el flujo vertical de agua subterránea es necesario estimularlas en comparación con lo que se observa generalmente en el sitio. Tal incremento en permeabilidad puede ocurrir potencialmente donde la disolución y fracturamiento es más intenso o en lugares con liberación de esfuerzos tal como cerca de la superficie de la cantera.

Notes

Acknowledgement

This study was made possible through a collaborative research effort (GSC project 980011), coordinated by Dr. Martine Savard of the Geological Survey of Canada-Québec and involving researchers from the GSC, Université Laval and INRS-ETE. Financial support for this study was provided by the Geological Survey of Canada, Canada Economic Development, the Conseil Régional de Développement-Laurentides, Ministère de l’Environnement du Québec, Regional County municipalities of Argenteuil, Deux-Montagnes, Mirabel and Therèse-de-Blainville, l’Association des Professionnels en Développement Economique des Laurentides and the Natural Sciences and Engineering Research Council of Canada. Field logistics were provided by the Geological Survey of Canada. We also thank Dr. Roger Morin of the USGS whose help was instrumental in the acquisition and interpretation of borehole geophysical data and Dr. Pat Lapcevic from Environment Canada for lending her equipment to the project and for help with the constant injection tests. Lastly we thank Les carrières St-Eustache for providing access to the quarry and Luc Trépanier for the testing set-up. We also appreciate the constructive reviews provided by Sarah Dickson and John Gale

References

  1. Bear J (1993) Modeling flow and contaminant transport in fractured rocks. In: Bear J, Tsang C-F, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic Press, pp 1–37Google Scholar
  2. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophysl Union Transa 27:526–534Google Scholar
  3. Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions, 2nd edn. John Wiley and Sons, New York, 776 p.Google Scholar
  4. Etienne M (2002) Caractérisation in situ des milieux fracturés à l’aide de diagraphies géophysiques. [In situ caracterization of fractured media using well logging techniques] Master’s thesis, Université Laval, Québec, CanadaGoogle Scholar
  5. Globensky Y (1987) Géologie des Basses-Terres du Saint-Laurent. MM 85-02, Ministère de l’Energie et des Ressources, QuébecGoogle Scholar
  6. Hantush MS (1956) Analysis of data from pumping tests in leaky aquifer. Trans Am Geophys Union 32:702–714Google Scholar
  7. Hantush MS (1960) Modification of the theory of leaky aquifer. J Geophys Res 65:3713–3725CrossRefGoogle Scholar
  8. Lapcevic PA, Novakowski KS, Sudicky EA (1998) Groundwater flow and solute transport in fractured media. In: Delleur JW (ed) The handbook of groundwater engineering. CRC Press, pp 17–39Google Scholar
  9. Lemieux J-M (2000) Caractérisation structurale locale et régionale des aquifères fracturés du Sud-Ouest du Québec. [Local and regional structural characterization of southwestern Québec fractured aquifers] B.Sc. thesis, Département de géologie et génie géologique, Université Laval, Québec, CanadaGoogle Scholar
  10. Lemieux J-M (2002) Caractérisation multiapproche à petite échelle de l’écoulement de l’eau souterraine dans un aquifère carbonaté fracturé et implications pour les changements d’échelle. [Small-scale study of groundwater flow in a fractured carbonate aquifer and implications for upscaling.] Master’s thesis, Université Laval, Québec, CanadaGoogle Scholar
  11. Michalski A, Britton R (1997) The role of bedding fractures in the hydrogeology of sedimentary bedrock -Evidence from the Newark basin, New Jersey. Groundwater 35:318–327Google Scholar
  12. Muldoon MA, Simo JAT, Bradbury KR (2001) Correlation of hydraulic conductivity with stratigraphy in a fractured-dolomite aquifer, northeastern Wisconsin, USA. Hydrogeol J 9:570–583CrossRefGoogle Scholar
  13. Narr W, Suppe J (1991) Joint spacing in sedimentary rocks. J Struct Geol 13:1037–1048CrossRefGoogle Scholar
  14. Nastev M, Savard MM, Lapcevic P, Paradis D, Lefebvre R, Martel R (2001) Investigation of hydraulic properties of regional fractured rock aquifers. In: 2nd Joint CGS-IAH Groundwater Speciality Conference, pp 1058–1066Google Scholar
  15. Novakowski KS (1989) Analysis of pulse interference tests. Water Resou Res 25:2377–2387CrossRefGoogle Scholar
  16. Novakowski KS, Lapcevic PA (1988) Regional hydrogeology of the Silurian and Ordovician sedimentary rock underlying Niagara falls, Ontario, Canada. J Hydrolo 104:211–236CrossRefGoogle Scholar
  17. Novakowski K, Lapcevic P, Bickerton G, Voralek J, Zanini L, Talbot C (1999) The development of a conceptual model for contaminant transport in the dolostone underlying Smithville, Ontario. NWRI Contribution 99–250, National Water Research InstituteGoogle Scholar
  18. NRC (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Research Council, Committee on Fracture Characterization and Fluid FlowGoogle Scholar
  19. Odling NE, Gillespie P, Bourgine B, Castaing C, Chilés J-P, Christensen NP, Fillion E, Gender A, Olsen C, Thrane L, Trice R, Aarseth E, Walsh JJ, Watterson J (1999) Variations in fracture system geometry and their implications for fluid flow in fractured hydrocarbon reservoirs. Petrol Geosci 5:373–384Google Scholar
  20. Piggott AR, Huynh TNT, Lapcevic PA, Novakowski KS (1995) Automated analysis of hydraulic and tracer tests conducted in fractured rock. NWRI contribution 95-28, Nat Water Res InstGoogle Scholar
  21. Ramsey JG, Huber MI (1987) The techniques of modern structural geology, vol. 2. Academic PressGoogle Scholar
  22. Savard MM, Nastev M, Lefebvre R, Martel R, Fagnan N, Bourque E, Cloutier V, Lauzière K, Gélinas P, Kirkwood D, Lapcevic P, Karanta G, Hamel A, Bolduc A, Ross M, Parent M, Lemieux J-M, Boisvert E, Salad Hersi O, Lavoie D, Girard F, Novakowski K, Therrien R, Etienne M, Fortier R (2000) Regional hydrogeology of fractured rock aquifers in southwestern Québec (St.Lawrence Lowlands). In 1st Joint CGS-IAH Groundwater Speciality Conference, pp 247–253Google Scholar
  23. Terzaghi RD (1965) Sources of errors in joint surveys. Geotechnique 15:287– 304CrossRefGoogle Scholar
  24. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 2:519–524Google Scholar
  25. Therrien R, Sudicky EA (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23:1–44CrossRefGoogle Scholar
  26. Therrien R, Sudicky EA (2000) Well bore boundary conditions for variably saturated flow modeling. Ad Water Resou 24:195–201CrossRefGoogle Scholar
  27. UNESCO (1984) Guide to the hydrology of carbonate rocks. Stud Reports in HydrolGoogle Scholar
  28. Walton WC (1962) Selected analytical methods for well and aquifer evaluation. Ill State Water Sur Bulletin 49Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jean-Michel Lemieux
    • 1
    • 2
    Email author
  • René Therrien
    • 1
  • Donna Kirkwood
    • 1
  1. 1.Département de géologie et génie géologiqueUniversité LavalQuébec
  2. 2.Present address: Department of Earth SciencesUniversity of WaterlooWaterlooCanada

Personalised recommendations