Hydrogeology Journal

, 14:689 | Cite as

Contact zone permeability at intrusion boundaries: new results from hydraulic testing and geophysical logging in the Newark Rift Basin, New York, USA

  • Jürg M. Matter
  • D. S. Goldberg
  • R. H. Morin
  • M. Stute


Hydraulic tests and geophysical logging performed in the Palisades sill and the underlying sedimentary rocks in the NE part of the Newark Rift Basin, New York, USA, confirm that the particular transmissive zones are localized within the dolerite-sedimentary rock contact zone and within a narrow interval below this contact zone that is characterized by the occurrence of small layers of chilled dolerite. Transmissivity values determined from fluid injection, aquifer testing, and flowmeter measurements generally fall in the range of 8.1E-08 to 9.95E-06 m2/s and correspond to various scales of investigation. The analysis of acoustic and optical BHTV images reveals two primary fracture sets within the dolerite and the sedimentary rocks—subhorizontal fractures, intersected by subvertical ones. Despite being highly fractured either with subhorizontal, subvertical or both fracture populations, the dolerite above and the sedimentary rocks below the contact zone and the zone with the layers of chilled dolerite are significantly less conductive. The distribution of the particular conductive intervals is not a function of the two dominant fracture populations or their density but rather of the intrusion path of the sill. The intrusion caused thermal fracturing and cracking of both formations, resulting in higher permeability along the contact zone.


Fractured rocks Igneous rocks Groundwater hydraulics Hydraulic testing Geophysical methods 


Des tests hydrauliques et des sondages géophysiques réalisés dans la formation Palisades et les roches sédimentaires sous-jacentes, dans la partie NE du rift du Newark, confirme que les zones transmissives sont localisées dans la zone de contact entre les roches sédimentaires et doléritiques, et dans un intervalle «en goulet» composé de petites couches de dolérites, à proximité de cette zone de contact. Les valeurs de transmissivités, déterminées par injection, essais de pompages, et mesures des débits, sont comprises entre 8.1E-8 et 9.95E-06 m2/s et correspondent à des échelles variables d’investigation. L’analyse d’images BHTV acoustiques et optiques, révèle deux lots de fractures dans la dolérite et la roche sédimentaire—fractures subhorizontales, intersectées par des fractures subverticales. Malgré des zones très fracturées, caractérisées par l’une ou l’autre voir les deux lots de fractures, la conductivité hydraulique est assez faible. La distribution des intervalles particulièrement conductifs n’est pas une fonction des deux lots de fractures dominants, ou de leur densité, mais plutôt du taux de pénétration des couches. L’intrusion provoque la fracturation thermique des deux formations, induisant une conductivité hydraulique meilleure le long de la zone de contact.


Pruebas hidráulicas y levantamientos geofísicos realizados en el manto interestratificado Palisades y las rocas sedimentarias subyacentes en la parte NE de la cuenca extensional Newark confirman que las zonas transmisivas particulares se localizan dentro de una zona de contacto dolerita-roca sedimentaria y dentro de un intervalo angosto por debajo de esta zona de contacto que se caracteriza por la ocurrencia de pequeñas capas de dolerita enfriada. Los valores de transmisividad determinados a partir de inyección de fluidos, pruebas de acuíferos, y estimaciones de mediciones de flujo generalmente caen en el rango de 8.1×10−8 y 9.95×10−6 m2/s y corresponden a varias escalas de investigación. El análisis de imágenes BHTV ópticas y acústicas revela dos conjuntos de fractura primarios dentro de la dolerita y las rocas sedimentarias: fracturas subhorizontales intersectadas por fracturas verticales. A pesar de encontrase altamente fracturadas ya sea con fracturas subverticals o subhorizontales o con ambas poblaciones de fracturas, la dolerita que se encuentra por encima, las rocas sedimentarias que se encuentran por debajo de la zona de contacto, y la zona con las capas de dolerita enfriada son significativamente menos conductivas. La distribución de los intervalos particulares conductivos no es función de las dos poblaciones de fracturas dominantes o de su densidad sino más bien de la ruta de intrusión del manto interestratificado. La intrusión causó fracturamiento termal y agrietamiento de ambas formaciones resultando en permeabilidad más alta a lo largo de la zona de contacto.



This study was funded by the Lamont-Doherty Earth Observatory and the Earth Institute of Columbia University. Field work and data acquisition was substantially supported by W. Masterson, G. Myers (LDEO), and B. Corland (U.S. Geological Survey). Lamont-Doherty Earth Observatory contribution number 6725.


  1. Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New YorkGoogle Scholar
  2. Bourdet D, Ayoub JA, Pirard YM (1989) Use of pressure derivative in well-test interpretation. SPE Formation Evaluation, pp 293–302Google Scholar
  3. Burgdorff K, Goldberg D (2001) Petrophysical characterization and natural fracturing in an olivine-dolerite aquifer. Electr Geosci 6:3Google Scholar
  4. Chen RH, Lee CW, Chen CS (2001) Evaluation of transport of radioactive contaminant in fractured rock. Environ Geol 41:440–450CrossRefGoogle Scholar
  5. Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. EOS Trans AGU 27:526–534Google Scholar
  6. de Marsily G (1981) Quantitative hydrogeology: hydrogeology for engineers. Academic Press, LondonGoogle Scholar
  7. Ericsson LO, Almen KE (1992) The Aspo Hard Rock Laboratory; overview of pre-investigations and monitoring. In: Tillerson JR, Wawersik WR (eds) Symposium on rock mechanics. AA Balkema, pp 171–180Google Scholar
  8. Faybishenko B, Witherspoon PA, Benson SM (2000) Dynamics of fluids in fractured rock. Am Geophys Union Geophy Monogr 122Google Scholar
  9. Finsterle S, Fabryka-Martin JT, Wang JSY (2002) Migration of a water pulse through fractured porous media. J Contam Hydrol 54:37–57CrossRefPubMedGoogle Scholar
  10. Goldberg D, Burgdorff K (2005) Natural fracturing and petrophysical properties of the Palisades dolerite sill. In: Harvey PK, Brewer TS, Pezard PA, Petrov VA (eds) Petrophysical properties of crystalline rocks. Geol Soc Lond Spec PublGoogle Scholar
  11. Goldberg D, Lupo T, Caputi M, Barton C, Seeber L (2003) Stress regimes in the Newark Basin Rift: evidence from core and downhole data. In: Le Tourneau P, Olsen P (eds) The great rift valleys of Pangea in eastern North America. Columbia Press, New York, pp 87–99Google Scholar
  12. Goldberg DS, Reynolds DJ, Williams CF, Witte WK, Olsen P, Kent DV (1994) Well logging results from the Newark Rift Basin Coring Project. Scient Drill 4:267–279Google Scholar
  13. Guimerà J, Carrera J (2000) A comparison of hydraulic and transport parameters measured in low-permeability fractured media. J Contam Hydrol 41:261–281CrossRefGoogle Scholar
  14. Hanson RB (1995) The hydrodynamics of contact metamorphism. GSA Bull 107:595–611CrossRefGoogle Scholar
  15. Horne RN (1995) Modern test well analysis: a computer-aided approach, 2nd edn. Petroway Inc., Palo AltoGoogle Scholar
  16. Houghton HF (1990) Hydrogeology of the Early Mesozoic rocks of the Newark Basin, New Jersey. In: Aspects of groundwater in New Jersey, 7th annual meeting of the Geol Assoc of New Jersey, Geol Assoc of New Jersey, Union, New JerseyGoogle Scholar
  17. Kuntz MA, Anderson SR, Champion DE, Lanphere MA, Grunwald DJ (2002) Tension cracks, eruptive fissures, dikes, and faults related to late Pleistocene–Holocene basaltic volcanism and implications for the distribution of hydraulic conductivity in the eastern Snake River plain, Idaho. Spec Pap Geol Soc Am 353:111–133Google Scholar
  18. Long JCS, Aydin A, Brown SR, Einstein HH, Hestir K, Hsieh PA, Myer LR, Nolte KG, Norton DL, Olsson OL, Paillet FL, Smith JL, Thomsen L (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DCGoogle Scholar
  19. Matter JM, Takahashi T, Goldberg D, Morin RH, Stute M (2002) Secure, long-term geological carbon sequestration in mafic igneous rocks: results from field and laboratory experiments. In: Proc GSA Ann Meet, Denver, CO, Abstract with Program vol. 34(6):305Google Scholar
  20. Mazurek M (2000) Geological and hydraulic properties of water-conducting features in crystalline rocks. In: Stober I, Bucher K (eds) Hydrogeology of crystalline rocks. Kluwer, Dordrecht, pp 3–26Google Scholar
  21. Merguerian C, Sanders JE (1995) Late syn-intrusive clastic dikes at the base of the Palisades intrusive sheet, Fort Lee, NJ, imply a shallow (∼3 to 4 km) depth intrusion. In: Hanson GN (ed) Geology of Long Island and metropolitan New York. State University of New York, Stony Brook, NY, pp 54–63Google Scholar
  22. Michalski A (1990) Hydrogeology of the Brunswick (Passaic) Formation and implications for ground water monitoring practices. Ground Water Monit Rev 10:134–143Google Scholar
  23. Michalski A, Britton R (1997) The role of bedding fractures in hydrogeology of sedimentary bedrock - evidence from the Newark Basin, New Jersey. Ground Water 35:318–327CrossRefGoogle Scholar
  24. Molz FJ, Bowman GK, Young SC, Waldrop WR (1994) Borehole flowmeters – field application and data analysis. J Hydrol 163:347–371CrossRefGoogle Scholar
  25. Molz FJ, Morin RH, Hess AE, Melville JG, Güven O (1989) The impeller meter for measuring aquifer permeability variations: evaluation and comparison with other tests. Water Resour Res 25:1677–1683CrossRefGoogle Scholar
  26. Morin RH, Senior LA, Decker ER (2000) Fractured-aquifer hydrogeology from geophysical logs: Brunswick Group and Lockatong Formation, Pennsylvania. Ground Water 38:182–192CrossRefGoogle Scholar
  27. Morin RH, Carleton GB, Poirier S (1997) Fractured-aquifer hydrogeology from geophysical logs: The Passaic Formation, New Jersey. Ground Water 35:328–338CrossRefGoogle Scholar
  28. Morin RH, Hess AE, Paillet FL (1988) Determining the distribution of hydraulic conductivity in a fractured limestone aquifer by simultaneous injection and geophysical logging. Ground Water 26:587–595CrossRefGoogle Scholar
  29. Naslund HR (1998) The Palisades sill, New York and New Jersey. In: Naslund HR (ed) Field trip guide for the 70th annual meeting of the New York State Geological AssociationGoogle Scholar
  30. Nativ R, Adar E, Assaf L, Nygaard E (2003) Characterization of the hydraulic properties of fractures in chalk. Ground Water 41:532–543PubMedCrossRefGoogle Scholar
  31. Olsen P (1980) The latest Triassic and Early Jurassic formations of the Newark Basin (eastern North America, Newark Supergroup): stratigraphy, structure, and correlation. New Jersey Acad Sci Bull 25:25–51Google Scholar
  32. Olsen P, Kent DV (1996) Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeogr Palaeoclimatol Palaeoecol 122:1–26CrossRefGoogle Scholar
  33. Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34:997–1010CrossRefGoogle Scholar
  34. Paillet FL, Reese RS (2000) Integrating borehole logs and aquifer tests in aquifer characterization. Ground Water 38:713–725CrossRefGoogle Scholar
  35. Pezard PA (1990) Electrical properties of mid-ocean ridge basalt and implications for the structure of the upper oceanic crust in hole 504B. J Geophys Res 95:9237–9264CrossRefGoogle Scholar
  36. Schlische RW (1992) Structural and stratigraphic development of the Newark extensional basin, eastern North America: evidence for the growth of the basin and its bounding structures. Geol Soc Am Bull 104:1246–1263CrossRefGoogle Scholar
  37. Schlische RW, Olsen P (1990) Quantitative filling model for continental extensional basins with applications to Early Mesozoic rifts of eastern North America. J Geol 98:135–155CrossRefGoogle Scholar
  38. Shapiro AM, Hsieh PA (1998) How good are estimates of transmissivity from slug tests in fractured rock? Ground Water 36:37–48CrossRefGoogle Scholar
  39. Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer, DordrechtGoogle Scholar
  40. Van Houten FB (1969) Late Triassic Newark Group, north-central New Jersey and adjacent Pennsylvania and New York. In: Subitzky S (ed) Geology of selected areas in New Jersey and eastern Pennsylvania and guidebook of excursions. Geol Soc Am Ann Meet, Atlantic City, 1969, Rutgers University Press, pp 314–347Google Scholar
  41. Walker KR (1969) A mineralogical, petrological, and geochemical investigation of the Palisades sill, New Jersey. Mem Geolog Soc Am 115:175–187Google Scholar
  42. Welhan JA, Johannesen CM, Reeves KS, Clemo TM, Glover JA, Bosworth KW (2002) Morphology of inflated pahoehoe lavas and spatial architecture of their porous and permeable zones, eastern Snake River Plain, Idaho. Geol Soc Am Spec Pap 353:135–150Google Scholar
  43. Witherspoon PA, Cook NGW, Gale JE (1980) Geologic storage of radioactive waste; results from field investigations at Stripa, Sweden. In: Post RG (ed) Waste management, part 2. Arizona Board of Regents, TucsonGoogle Scholar
  44. Young SC, Pearson HS (1995) The electromagnetic borehole flowmeter: description and application. Ground Water Monit Remed 15:138–147Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jürg M. Matter
    • 1
  • D. S. Goldberg
    • 2
  • R. H. Morin
    • 3
  • M. Stute
    • 1
  1. 1.Lamont-Doherty Earth Observatory of Columbia UniversityGeochemistryPalisadesUSA
  2. 2.Lamont-Doherty Earth Observatory of Columbia UniversityBorehole ResearchPalisadesUSA
  3. 3.U.S. Geological SurveyDenver Federal CenterDenverUSA

Personalised recommendations