Hydrogeology Journal

, Volume 14, Issue 4, pp 473–484

Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system

Paper

Abstract

The dynamics of organic carbon (OC), turbidity, faecal indicator bacteria and physicochemical parameters was studied in a karst system near Yverdon, Switzerland. Online measurements and sampling were done at a swallow hole draining an agricultural surface (the input), and two groups of springs (the outputs) that often show bacterial contamination. A fluorescent tracer that was injected into the swallow hole during low-flow conditions first arrived at the springs 10–12 days after injection; the total recovery rate was 29%. Previous tracer tests during high-flow conditions gave shorter travel times. After a major rainfall event, a primary turbidity peak was observed at the springs. It coincides with the rising limb of the hydrograph, indicating remobilisation of autochthonous particles from the aquifer. A secondary turbidity peak occurs several days later, suggesting the arrival of allochthonous particles from the swallow hole. Wider peaks of OC and bacteria were observed simultaneously. Applying methods from molecular microbiology (PCR-DGGE) allowed characterisation of the bacterial communities at the swallow hole and the springs. The results demonstrate that the swallow hole is an important source of groundwater contamination, while its contribution to aquifer recharge is insignificant. OC appears to be a better indicator for bacterial contamination than turbidity.

Keywords

Karst aquifer Tracer test Organic carbon Turbidity Microbial community 

Résumé

La dynamique du carbone organique, de la turbidité, des bactéries indicatrices de contamination fécale et d’autres paramètres physico-chimiques a été étudiée dans un système karstique proche de la ville d’Yverdon-les-Bains, Suisse. Des mesures en continu ainsi que des échantillonnages ont été effectués à une perte drainant une zone agricole (input), et à deux groupes sourciers (output) qui montrent fréquemment une contamination bactérienne. En période d’étiage, un essai de traçage à l’uranine a été réalisé depuis la perte. Le traceur est apparu aux sources 10–12 jours après l’injection; la masse de restitution totale a été de 29%. Des essais précédents, réalisés en hautes eaux, ont montré des temps de transit plus court. Suite à un événement pluvieux important, un pic de turbidité primaire, synchrone avec l’augmentation du débit, est observé aux sources, indiquant une re-mobilisation des sédiments autochtones de l’aquifère. Un pic de turbidité secondaire apparaît quelques jours plus tard aux sources, suggérant l’arrivée de matériel allochtone de la perte. Cette dernière est accompagnée de pics plus larges de carbone organique et des bactéries indicatrices de contamination fécale. La microbiologie moléculaire (PCR-DGGE) a permis la caractérisation des communautés bactériennes de la perte et des sources. Ces résultats démontrent l’importante influence de la perte sur la qualité de l’eau souterraine, alors que sa contribution au débit du système est négligeable. Le carbone organique semble être un meilleur indicateur de la présence de contamination bactérienne que la turbidité.

Resumen

Se ha estudiado la dinámica del carbono orgánico, turbiedad, una bacteria indicadora de fecales, y parámetros fisicoquímicos en un sistema kárstico cerca de Yverdon, Suiza. Se realizaron mediciones en línea y muestreo en un sumidero que drena una superficie agrícola (la entrada), y dos grupos de manantiales (las salidas) que frecuentemente muestran contaminación bacterial. Un trazador fluorescente que se inyectó en el sumidero durante condiciones de flujo bajo arribó en los manantiales por vez primera 10–12 días después de que fue inyectado; el ritmo total de recuperación fue de 29%. Las pruebas de trazadores realizadas con anterioridad bajo condiciones de flujo alto aportaron tiempos de viaje más cortos. Después de una tormenta fuerte se observó un pico de turbiedad primario en los manantiales. El pico coincide con el limbo ascendente del hidrograma indicando remobilización de partículas alóctonas provenientes del acuífero. Un pico de turbiedad secundario ocurre varios días más tarde sugiriendo el arribo de partículas alóctonas provenientes del sumidero. Se observaron simultáneamente picos más amplios de carbono orgánico y bacteria. La aplicación de métodos de microbiología molecular (PCR-DGGE) permitieron caracterizar las comunidades de bacteria en el sumidero y los manantiales. Los resultados demuestran que el sumidero es una fuente importante de contaminación de aguas subterráneas mientras que su contribución a la recarga del acuífero es insignificante. El carbono orgánico parece ser un mejor indicador de contaminación bacterial que la turbiedad.

References

  1. Alberic P, Lepiller M (1998) Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France). Water Res 32(7):2051–2064CrossRefGoogle Scholar
  2. Amraoui F, Razack M, Bouchaou L (2003) Turbidity dynamics in karstic systems. Example of Ribaa and Bittit springs in the Middle Atlas (Morocco). Hydrological Sciences Journal-Journal des Sci Hydrologiques 48(6):971–984CrossRefGoogle Scholar
  3. Atkinson TC, Smith DI, Lavis JJ, Whitaker RJ (1973) Experiments in tracing underground waters in limestones. J Hydrol 19(4):323–349CrossRefGoogle Scholar
  4. Atteia O (1998) Evolution of size distributions of natural particles during aggregation: modelling versus field results. Coll Surf A -Physicochem Engin Asp 139(2):171–188CrossRefGoogle Scholar
  5. Atteia O, Kozel R (1997) Particle size distributions in waters from a karstic aquifer: from particles to colloids. J Hydrol 201(1-4):102–119CrossRefGoogle Scholar
  6. Auckenthaler A, Huggenberger P (2003) Pathogene Mikroorganismen im Grund- und Trinkwasser. Transport - Nachweismethoden - Wassermanagement (Pathogenic microorganisms in groundwater and drinking water. Transport, analytical methods and water management): 196 p.; BirkhäuserGoogle Scholar
  7. Auckenthaler A, Raso G, Huggenberger P (2002) Particle transport in a karst aquifer: natural and artificial tracer experiments with bacteria, bacteriophages and microspheres. Water Sci Technol 46(3):131–138Google Scholar
  8. Batiot C (2003) Etude expérimentale du cycle du carbone en régions karstiques (Experimental study of the carbon cycle in karst areas). PhD, University of Avignon, FranceGoogle Scholar
  9. Batiot C, Emblanch C, Blavoux B (2003) Total Organic Carbon (TOC) and magnesium (Mg2+): two complementary tracers of residence time in karstic systems. Comptes Rendus Geosci 335(2):205–214CrossRefGoogle Scholar
  10. Bouchaou L, Mangin A, Chauve P (2002) Turbidity mechanism of water from a karstic spring: example of the Ain Asserdoune spring (Beni Mellal Atlas, Morocco). J Hydrol 265(1–4):34–42CrossRefGoogle Scholar
  11. Boyer DG, Pasquarell GC (1999) Agricultural land use impacts on bacterial water quality in a karst groundwater aquifer. J Am Water Resou Assoc 35(2):291–300CrossRefGoogle Scholar
  12. Byrd JJ, Xu HS, Colwell RR (1991) Viable but non-culturable bacteria in drinking water. Appl Environ Microbiol 57:875–878Google Scholar
  13. Chapelle FH (2001) Ground-water microbiology and geochemistry. John Wiley & Sons, New YorkGoogle Scholar
  14. Cornaton F, Perrochet P (2002). Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling. J Hydrolo 262(1–4):165–176CrossRefGoogle Scholar
  15. Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosys-tems. Envir Conserv 30(2):104–130CrossRefGoogle Scholar
  16. Drew D, Hötzl H (eds) (1999) Karst Hydrogeology and Human Activities. Impacts, Consequences and Implications—International Contributions to hydrogeology, 20. Balkema, RotterdamGoogle Scholar
  17. Emblanch C, Blavoux B, Puig JM, Mudry J (1998) Dissolved organic carbon of infiltration within the autogenic karst hydrosystem. Geophys Res Lett 25(9):1459–1462CrossRefGoogle Scholar
  18. Ford D, Williams DW (1989) Karst geomorphology and hydrology. Unwin Hyman, BostonGoogle Scholar
  19. Goldscheider N (2002) Hydrogeology and Vulnerability of Karst Systems. Examples from the Northern Alps and Swabian Alb. PhD, University of Karlsruhe. Schr Angew Geol Karlsruhe 68:1–236Google Scholar
  20. Gunn J, Tranter J, Perkins J, Hunter C (1998) Sanitary bacterial dynamics in a mixed karst aquifer. In: Leibundgut C, Gunn J, Dassargues A (eds) Karst Hydrology, vol 247, IAHS Publication, pp 61–70Google Scholar
  21. GSchV (1998) Water Protection Ordinance, GSchV, SR 814.201, Swiss Federal Law, BernGoogle Scholar
  22. Heuer H, Smalla K (1997) Application of denaturing gradient gel electrophoresis and temperature gradient gel electrophoresis for studying soil microbial communities. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern Soil Microbiology. Marcel Dekker, New York, pp 353–374Google Scholar
  23. Jordi HA (1994) Atlas géologique de la Suisse 1:25000, feuille 1203: Yverdon-les-Bains (Swiss geological atlas 1:25000, sheet 1203: Yverdon-les-Bains). Service hydrologique et géologique national, IttigenGoogle Scholar
  24. Käss W (1998) Tracing technique in geohydrology. Balkema, RotterdamGoogle Scholar
  25. Katz BG, Catches JS, Bullen TD, Michel RL (1998) Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream. J Hydrol 211(1–4):178–207CrossRefGoogle Scholar
  26. Lacroix M, Rodet J, Wang HQ, Masséi N, Dupont JP (2000) Origine des matières en suspension dans un système aquifère karstique: apports de la microgranulométrie (Origin of suspended matter in a karst aquifer system: contribution of microgranulometry). C R Acad Sci Paris, Sciences de la Terre et des Planètes 330(2000):347–354Google Scholar
  27. Mahler BJ, Personne JC, Lods GF, Drogue C (2000) Transport of free and particulate-associated bacteria in karst. J Hydrol 238(3–4):179–193CrossRefGoogle Scholar
  28. Massei N, Wang H, Dupont J, Rodet J, Laignel B (2003) Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring. J Hydrol 275(1–2):109–121CrossRefGoogle Scholar
  29. Mikell AT, Smith CL, Richardson JC (1996) Evaluation of media and techniques to enumerate heterotrophic microbes from karst and sand aquifer springs. Microb Ecol 31(2):115–124CrossRefGoogle Scholar
  30. Muralt R (1999) Processus hydrogéologiques et hydrochimiques dans les circulations profondes des calcaires du Malm de l’arc jurassien (Hydrogeological and hydrochemical processes in the circulation system in the Malm limestones of the Jurassic belt). PhD, University of Neuchâtel, SwitzerlandGoogle Scholar
  31. Muralt R, Vuataz FD, Schonborn G, Sommaruga A, Jenny J (1997) Integration of hydrochemical, geological and geophysical methods for the exploration of a new thermal water resource. Case of Yverdon-les-Bains, foot of the Jura range. Eclogae Geologicae Helvetiae 90(2):179–197Google Scholar
  32. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2(3):317–322CrossRefGoogle Scholar
  33. Nebbache S, Loquet M, Vinceslas-Akpa M, Feeny V (1997) Turbidity and microorganisms in a karst spring. Europ J Soil Biol 33(2):89–103Google Scholar
  34. Northup DE, Lavoie KH (2001) Geomicrobiology of caves: A review. Geomicrobiol J 18(3):199–222CrossRefGoogle Scholar
  35. Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl and Envir Microbiol 63(9):3367–3373Google Scholar
  36. Personne JC, Poty F, Vaute L, Drogue C (1998) Survival, transport and dissemination of Escherichia coli and enterococci in a fissured environment. Study of a flood in a karstic aquifer. J Appl Microbiol 84(3):431–438CrossRefGoogle Scholar
  37. Ryan M, Meiman J (1996) An examination of short-term variations in water quality at a karst spring in Kentucky. Groundwater 34(1):23–30Google Scholar
  38. Schnegg PA, Costa R (2003) Tracer tests made easier with field fluorometers. Technical note. Bull Hydrogeol 20 89–91Google Scholar
  39. Simon KS, Gibert J, Petitot P, Laurent R (2001) Spatial and temporal patterns of bacterial density and metabolic activity in a karst aquifer. Archiv für Hydrobiologie 151(1):67–82Google Scholar
  40. Slijepcevic A, Rossi P, Aragno M, Zopfi J. Relationship between environmental factors and community structure of bacterioplankton as revealed by ribosomal 16S DNA and RNA DGGE fingerprints in a holomictic, eutrophic lake. FEMS Microbiol. Ecol. (submitted)Google Scholar
  41. Sommaruga A (1996) Geology of the central Jura and the Molasse Basin: new insight into an evaporite-based foreland fold and thrust belt. PhD, University of Neuchâtel, SwitzerlandGoogle Scholar
  42. Sommaruga A (1999) Decollement tectonics in the Jura foreland fold-and-thrust belt. Marine and Petroleum Geology 16(2):111–134CrossRefGoogle Scholar
  43. Szewzyk U, Szewzyk R, Manz W, Schleiffer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127CrossRefGoogle Scholar
  44. Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environments. Crit Rev Microbiol 26(1):37–57CrossRefGoogle Scholar
  45. Thurman E (1985) Organic chemistry of natural waters. Nijhoff, Junk, DordrechtGoogle Scholar
  46. Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). European Commission, BrusselsGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Centre of HydrogeologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Laboratory of MicrobiologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations