Hydrogeology Journal

, Volume 14, Issue 4, pp 573–590 | Cite as

Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada

  • Vincent CloutierEmail author
  • René Lefebvre
  • Martine M. Savard
  • Édith Bourque
  • René Therrien


A comprehensive hydrogeochemical study was carried out in the Paleozoic Basses-Laurentides sedimentary rock aquifer system in Québec over a 1500 km2 study area. Groundwater samples were collected at 153 sites, characterizing all geological and hydrogeological units to a maximum depth of 140 m. Groundwater was analyzed for major, minor and trace inorganic constituents, stable isotopes δ 2H, δ 18O, and δ 13C of dissolved inorganic carbon (DIC), and some samples were analyzed for 3H, and 14C of DIC. The regional distribution of groundwater types shows that the hydrogeological conditions exert a dominant control on the major ions chemistry of groundwater. Preferential recharge areas are characterized by tritiated Ca-Mg-HCO3 groundwater, and confined conditions by submodern Na-HCO3 and Na-Cl groundwater types. Two groundwater end-members are identified in the aquifer system, modern meteoric water and Pleistocene Champlain Sea water. The region displays significant variations of groundwater geochemistry and quality controlled by glaciation, Champlain Sea invasion, lithological rock diversity, and flow system scales. This situation leads to varied groundwater types and origins within a restricted area.


Hydrogeochemistry Stable isotopes Groundwater characterisation Sedimentary rock Canada 


Une étude hydrogéochimique détaillée a été réalisée sur le système aquifère de roche sédimentaire Paléozoïque des Basses-Laurentides, au Québec, sur une région d'étude de 1500 km2. Des échantillons d'eau souterraine ont été prélevés à 153 sites, caractérisant l'ensemble des unités géologiques et hydrogéologiques jusqu'à une profondeur de 140 m. L'eau souterraine a été analysée pour les constituants inorganiques majeurs, mineurs et traces, les isotopes stables δ 2H, δ 18O et δ13C du carbone inorganique dissous (CID), et certains échantillons ont été analysés pour 3H et 14C du CID. La distribution régionale des types d'eau a montré le contrôle des conditions hydrogéologiques sur la chimie des éléments majeurs des eaux souterraines. Les zones préférentielles de recharge sont caractérisées par une eau souterraine enrichie en tritium de type Ca-Mg-HCO3, et les zones confinées par des eaux souterraines submodernes de types Na-HCO3 et Na-Cl. Deux sources d'eau souterraine sont identifiées dans le système aquifère, l'eau météorique moderne et l'eau Pléistocène de la Mer de Champlain. La région est caractérisée par des variations significatives de la géochimie et de la qualité des eaux souterraines, contrôlées par les glaciations, l'invasion de la Mer de Champlain, la diversité lithologique des roches, et l'échelle des systèmes d'écoulement. Cette situation engendre donc une grande variété de types et d'origines d'eau souterraine à l'intérieur d'une région restreinte.


Se llevó a cabo un estudio hidrogeoquímico completo en el sistema acuífero de roca sedimentaria Paleozoico Basses-Laurentides en Québec en un área de 1,500 km2. Se tomaron muestras de agua subterránea en 153 sitios caracterizando todas las unidades geológicas e hidrogeológicas en una profundidad máxima de 140 m. Se analizó el agua subterránea por constituyentes inorgánicos mayores, menores y traza, isótopos estables δ2H, δ18O, y δ13C de carbono inorgánico disuelto (CID), y algunas muestras se analizaron por 3H y 14C de CID. La distribución regional de los diferentes tipos de agua subterránea muestra que las condiciones hidrogeológicas ejercen un control dominante en los iones mayores de química del agua subterránea. Las áreas principales de recarga se caracterizan por agua subterránea tritiada en Ca-Mg-HCO3, y condiciones confinadas por tipos de agua submodernas Na-HCO3 y Na-Cl. Se identificaron en el sistema acuífero dos miembros extremos de agua subterránea, agua meteórica moderna, y agua Pleistocena del mar Champlain. La región muestra variaciones significativas de calidad y geoquímica de agua subterránea controlada por glaciación, invasión del mar Champlain, diversidad litológica rocosa, y escalas de sistema de flujo.



The project was carried out by the Geological Survey of Canada (GSC contribution 2003192), in collaboration with INRS-Eau, Terre & Environnement (INRS-ETE), Université Laval and Environment Canada. Funding for the study came from the GSC, Economic Development Canada, Regional County Municipalities (RCM) of Argenteuil, Mirabel, Deux-Montagnes and Thérèse-de-Blainville, Québec Environment Ministry, Conseil Régional de Développement-Laurentides, and Association des Professionnels de Développement Économique des Laurentides. Financial support for Vincent Cloutier was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds québécois de la recherche sur la nature et les technologies, and INRS-ETE as postgraduate scholarships. NSERC also supported René Lefebvre and René Therrien through operating grants. We acknowledge the Québec Environment Ministry for providing the analyses of inorganic constituents in groundwater. The drilling was partly supported by the Québec Ministry of Transportation. The authors thank Marc Luzincourt (Delta-Lab, GSC-Québec) for stable isotopes analyses. We also thank Dr. Christine Rivard for her internal review for the GSC, as well as Dr. Stephen Grasby, Dr. Ken Howard and Dr. Alfonso Rivera who provided valuable comments on an early manuscript as members of Cloutier's thesis committee. Finally, the authors wish to thank Dr. Perry Olcott (HJ Managing Editor), Dr. Ian Clark and an anonymous reviewer for their constructive reviews, which helped improve the original manuscript. The work of all students involved in the project as field assistants, and the collaboration of the population of the RCM giving site access are greatly appreciated.


  1. Back W (1966) Hydrochemical facies and ground-water flow patterns in northern part of Atlantic Coastal Plain. U.S. Geological Survey Professional Paper 498-AGoogle Scholar
  2. Bolduc AM, Ross M (2001) Surficial geology, Lachute-Oka, Québec. Geological Survey of Canada, Open File 3520, 1:50,000Google Scholar
  3. Cane G, Clark ID (1998) Tracing ground water recharge in an agricultural watershed with isotopes. Ground Water 37(1):133–139CrossRefGoogle Scholar
  4. Chapelle FH, Knobel LL (1985) Stable carbon isotopes of HCO3 in the Aquia Aquifer, Maryland: Evidence for an isotopically heavy source of CO2. Ground Water 23(5):592–599CrossRefGoogle Scholar
  5. Chi G, Lavoie D, Salad Hersi O (2000) Dolostone units of the Beekmantown Group in the Montréal area, Québec: diagenesis and constraints on timing of hydrocarbon activities. Geological Survey of Canada, Current Research 2000-D1Google Scholar
  6. Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology, Lewis Publishers, New YorkGoogle Scholar
  7. Clark JF, Davisson ML, Hudson GB, Macfarlane PA (1998) Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota aquifer, Colorado and Kansas. Journal of Hydrology 211:151–167CrossRefGoogle Scholar
  8. Clark TH (1972) Montréal Area. Department of Natural Resources, General Direction of Mines, Geological Exploration Service, Québec, Geological report 152Google Scholar
  9. Cloutier V (2004) Origin and geochemical evolution of groundwater in the Paleozoic Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Québec, Canada. PhD Thesis, INRS-Eau, Terre & Environnement, Québec, Canada [in French and English]Google Scholar
  10. Cloutier V, Bourque É (in press) Groundwater relative quality zones map. In: Regional hydrogeologic characterization of the fractured aquifer system in south-western Quebec: Part I – Regional hydrogeology of the aquifer system. Geological Survey of Canada, Bulletin, 587Google Scholar
  11. Cloutier V, Bourque É, Lefebvre R, Savard MM, Martel R (in press) Hydrogeochemical characterization and groundwater quality: Part I-Regional hydrogeology of the aquifer system. Geological Survey of Canada, Bulletin, 587Google Scholar
  12. Coleman ML, Shepherd TJ, Durham JJ, Rousse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry 54(6):993–995CrossRefGoogle Scholar
  13. Eberts SM, George LL (2000) Regional ground-water flow and geochemistry in the Midwestern Basins and Arches Aquifer System in parts of Indiana, Ohio, Michigan, and Illinois. U.S. Geological Survey Professional Paper 1423-CGoogle Scholar
  14. Freeze RA, Cherry JA (1979) Groundwater, Prentice-Hall, Inc., Englewood Cliffs, New JerseyGoogle Scholar
  15. Globensky Y (1987) Géologie des Basses-Terres du St-Laurent (Geology of the St. Lawrence Lowlands). Ministry of Energy and Resources, General Direction for geologic and mineral exploration, Québec, Report MM 85-02Google Scholar
  16. Gold DP (1972) The Monteregian Hills: ultra-alkaline rocks and the Oka carbonatite complex. International Geological Congress, 24th, Montréal, Canada, Guidebook B-11Google Scholar
  17. Gosselin DC, Harvey FE, Frost CD (2001) Geochemical evolution of ground water in the Great Plains aquifer of Nebraska: Implications for the management of a regional aquifer system. Ground Water 39(1):98–108CrossRefGoogle Scholar
  18. Hamel A, Therrien R, Gélinas P (2001) Groundwater recharge of fractured rock aquifers in south-western Québec. In: 2nd Joint IAH-CGS Groundwater Specialty Conf, Calgary, pp 1078–1084Google Scholar
  19. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper 2254, Third EditionGoogle Scholar
  20. Henderson T (1985) Geochemistry of ground water in two sandstone aquifer systems in the Northern Great Plains in parts of Montana, Wyoming, North Dakota, and South Dakota. U.S. Geological Survey Professional Paper 1402-CGoogle Scholar
  21. Hendry MJ, Schwartz FW (1990) The chemical evolution of ground water in the Milk River Aquifer, Canada. Ground Water 28(2):253–261CrossRefGoogle Scholar
  22. Héroux Y, Bertrand R (1991) Maturation thermique de la matière organique dans un basin du Paléozoïque inférieur, basses-terres du Saint-Laurent, Québec, Canada (Thermal maturation of organic matter in a Lower Paleozoic basin, St-Lawrence Lowlands, Québec, Canada). Canadian Journal of Earth Sciences 28:1019–1030CrossRefGoogle Scholar
  23. Hillaire-Marcel C (1988) Isotopic composition (18O,13C,14C) of biogenic carbonates in Champlain Sea Sediments. In: Gadd NR (ed) The late Quaternary Development of the Champlain Sea Basin: Geological Association of Canada, Special Paper 35: 177–194Google Scholar
  24. Hiscock KM, Dennis PF, Saynor PR, Thomas MO (1996) Hydrochemical and stable isotope evidence for the extent and nature of the effective Chalk aquifer of north Norfolk, UK. Journal of Hydrology 180:79–107CrossRefGoogle Scholar
  25. IAEA (2001) GNIP maps and animations. International Atomic Energy Agency, Vienna, (September 2002)
  26. Karanta G, Martel R, Nastev M, Therrien R, Paradis D, Lefebvre R (2001) Comparative study of methods for wellhead protection area delineation in fractured rocks. In: 2nd Joint IAH-CGS Groundwater Specialty Conf, Calgary, pp 1350–1357Google Scholar
  27. Lévesque G (1982) Geology of Quaternary deposits of the Oka-St. Scholastique region, Québec. MSc Thesis, Université du Québec à Montréal, Québec, Canada [in French]Google Scholar
  28. Lewis DW (1971) Qualitative petrographic interpretation of Potsdam Sandstone (Cambrian), Southwestern Québec. Canadian Journal of Earth Sciences 8:853–882Google Scholar
  29. Mazor E (1991) Applied chemical and isotopic groundwater hydrology, Open University Press, Great BritainGoogle Scholar
  30. MENV (2000) Portrait régional de l'eau: Laurentides, région administrative 15 (Regional overview of water: Laurentides, administrative region 15). Québec Environment Ministry, (July 2000)
  31. Nastev M, Savard MM, Lapcevic P, Paradis D, Lefebvre R, Martel R (2001) Investigation of hydraulic properties of regional fractured rock aquifers. In: 2nd Joint IAH-CGS Groundwater Specialty Conf, Calgary, pp 1058–1066Google Scholar
  32. Nastev M, Savard MM, Lapcevic P, Lefebvre R, Martel R (2004) Hydraulic properties and scale effects investigation in regional rock aquifers, south-western Quebec, Canada. Hydrogeology Journal 12(3):257–269CrossRefGoogle Scholar
  33. Nastev M, Savard MM, Paradis D, Lefebvre R, Ross M (in press a) Regional hydrogeologic characterization of the fractured aquifer system in south-western Quebec: Part II-Quantitative study of groundwater resources. Geological Survey of Canada, Bulletin, 587Google Scholar
  34. Nastev M, Rivera A, Lefebvre R, Martel R, Savard M (in press b) Numerical simulation of groundwater flow in regional rock aquifers. Southwestern Quebec, Canada. Hydrogeology JournalGoogle Scholar
  35. Ophori DU, Tóth J (1989) Patterns of ground-water chemistry, Ross Creek Basin, Alberta, Canada. Ground Water 27(1):20–26CrossRefGoogle Scholar
  36. Panno SV, Hackley KC, Cartwright K, Liu CL (1994) Hydrochemistry of the Mahomet bedrock valley aquifer, East-Central Illinois: Indicators of recharge and ground-water flow. Ground Water 32(4):591–604CrossRefGoogle Scholar
  37. Paradis D (in press) Potentiometric surface map. In: Regional hydrogeologic characterization of the fractured aquifer system in south-western Quebec: Part I – Regional hydrogeology of the aquifer system. Geological Survey of Canada, Bulletin, 587Google Scholar
  38. Parent M, Occhietti S (1988) Late Wisconsinian deglaciation and Champlain Sea invasion in the St. Lawrence Valley, Québec. Géographie physique et Quaternaire 42(3):215–246Google Scholar
  39. Parkhurst DL, Appelo CAJ (1999) User's guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, Water-Resources Investigations Report 99–4259Google Scholar
  40. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. American Geophysical Union. Papers, Hydrology, 914–923Google Scholar
  41. Rocher M, Salad-Hersi O, Castonguay S (in press) Geologic map of St. Lawrence Lowlands—Sector west of Montreal (update). In: Regional hydrogeologic characterization of the fractured aquifer system in south-western Quebec: Part I – Regional hydrogeology of the aquifer system. Geological Survey of Canada, Bulletin, 587Google Scholar
  42. Ross M, Martel R, Lefebvre R, Parent M, Savard MM (2004) Assessing rock aquifer vulnerability using downward advective times from a 3D model of surficial geology: A case study from the St. Lawrence Lowlands, Canada. In: Rodriguez R, Civita M, de Maio M (eds), Geofísica Internacional 43(4):591–602Google Scholar
  43. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitations. Climate Change in Continental Isotopic Records, Geophysical Monograph 78, American Geophysical Union, 1–36Google Scholar
  44. Salad Hersi O, Lavoie D, Nowlan GS (2003) Reappraisal of the Beekmantown Group sedimentology and stratigraphy, Montréal area, southwestern Quebec: implication for understanding the depositional evolution of the Lower-Middle Ordovician Laurentian passive margin of eastern Canada. Canadian Journal of Earth Sciences 40:149–176CrossRefGoogle Scholar
  45. Savard MM, Nastev M, Paradis D, Lefebvre R, Martel R, Cloutier V, Murat V, Bourque É, Ross M, Lauzière K, Parent M, Hamel A, Lemieux J-M, Therrien R, Kirkwood D, Gélinas P (in press) Regional hydrogeologic characterization of the fractured aquifer system in south-western Quebec: Part I – Regional hydrogeology of the aquifer system. Geological Survey of Canada, Bulletin, 587Google Scholar
  46. Simard G (1977) Carbon 14 and tritium measurements of groundwaters in the Eaton River Basin and in the Mirabel area, Québec. Canadian Journal of Earth Science 14:2325–2338Google Scholar
  47. Simard G (1978) Hydrogéologie de la région de Mirabel (Hydrogeology of the Mirabel Region). Ministry of Natural Resources, Groundwater Service, Québec, Report H.G.-11Google Scholar
  48. Stimson J, Frape S, Drimmie R, Rudolph D (2001) Isotopic and geochemical evidence of regional-scale anisotropy and interconnectivity of an alluvial fan system, Cochabamba Valley, Bolivia. Applied Geochemistry 16:1097–1114CrossRefGoogle Scholar
  49. Thorstenson DC, Fisher DW, Croft MG (1979) The geochemistry of the Fox Hills-Basal Hell Creek Aquifer in Southwestern North Dakota and Northwestern South Dakota. Water Resources Research 15(6):1479–1498CrossRefGoogle Scholar
  50. Tóth J (1999) Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal 7(1):1–14CrossRefGoogle Scholar
  51. UNESCO (1975) Legends for geohydrochemical maps. Technical papers in hydrology, The Unesco Press, SwitzerlandGoogle Scholar
  52. Vengosh A, Gill J, Davisson ML, Hodson GB (2002) A multi-isotope (B, Sr, O, H, and C) and age dating (3H-3He and 14C) study of groundwater from Salinas Valley, California: Hydrogeochemistry, dynamics, and contamination processes. Water Resources Research 38(1):10.1029/2001WR000517Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Vincent Cloutier
    • 1
    Email author
  • René Lefebvre
    • 2
  • Martine M. Savard
    • 3
  • Édith Bourque
    • 4
  • René Therrien
    • 5
  1. 1.Institut national de la recherche scientifique, INRS-Eau, Terre & Environnementnow at Université du Québec en Abitibi-TémiscamingueAmos (Québec)Canada
  2. 2.Institut national de la recherche scientifique, INRS-Eau, Terre & EnvironnementQuébec (Québec)Canada
  3. 3.Geological Survey of CanadaNatural Resources CanadaQuébec, (Québec)Canada
  4. 4.Geological Survey of Canada, now at Bureau d'audiences publiques sur l'environnementQuébec (Québec)Canada
  5. 5.Département de géologie et de génie géologiqueUniversité LavalSainte-Foy (Québec)Canada

Personalised recommendations