Hydrogeology Journal

, Volume 13, Issue 1, pp 161–183

Dealing with spatial heterogeneity

  • Gh. de Marsily
  • F. Delay
  • J. Gonçalvès
  • Ph. Renard
  • V. Teles
  • S. Violette
Paper

Abstract

Heterogeneity can be dealt with by defining homogeneous equivalent properties, known as averaging, or by trying to describe the spatial variability of the rock properties from geologic observations and local measurements. The techniques available for these descriptions are mostly continuous Geostatistical models, or discontinuous facies models such as the Boolean, Indicator or Gaussian-Threshold models and the Markov chain model. These facies models are better suited to treating issues of rock strata connectivity, e.g. buried high permeability channels or low permeability barriers, which greatly affect flow and, above all, transport in aquifers. Genetic models provide new ways to incorporate more geology into the facies description, an approach that has been well developed in the oil industry, but not enough in hydrogeology. The conclusion is that future work should be focused on improving the facies models, comparing them, and designing new in situ testing procedures (including geophysics) that would help identify the facies geometry and properties. A world-wide catalog of aquifer facies geometry and properties, which could combine site genesis and description with methods used to assess the system, would be of great value for practical applications.

Résumé

On peut aborder le problème de l’hétérogénéité en s’efforçant de définir une perméabilité équivalente homogène, par prise de moyenne, ou au contraire en décrivant la variation dans l’espace des propriétés des roches à partir des observations géologiques et des mesures locales. Les techniques disponibles pour une telle description sont soit continues, comme l’approche Géostatistique, soit discontinues, comme les modèles de faciès, Booléens, ou bien par Indicatrices ou Gaussiennes Seuillées, ou enfin Markoviens. Ces modèles de faciès sont mieux capables de prendre en compte la connectivité des strates géologiques, telles que les chenaux enfouis à forte perméabilité, ou au contraire les faciès fins de barrières de perméabilité, qui ont une influence importante sur les écoulement, et, plus encore, sur le transport. Les modèles génétiques récemment apparus ont la capacité de mieux incorporer dans les modèles de faciès les observations géologiques, chose courante dans l’industrie pétrolière, mais insuffisamment développée en hydrogéologie. On conclut que les travaux de recherche ultérieurs devraient s’attacher à développer les modèles de faciès, à les comparer entre eux, et à mettre au point de nouvelles méthodes d’essais in situ, comprenant les méthodes géophysiques, capables de reconnaître la géométrie et les propriétés des faciès. La constitution d’un catalogue mondial de la géométrie et des propriétés des faciès aquifères, ainsi que des méthodes de reconnaissance utilisées pour arriver à la détermination de ces systèmes, serait d’une grande importance pratique pour les applications.

Resumen

La heterogeneidad se puede manejar por medio de la definición de características homogéneas equivalentes, conocidas como promediar o tratando de describir la variabilidad espacial de las características de las rocas a partir de observaciones geológicas y medidas locales. Las técnicas disponibles para estas descripciones son generalmente modelos geoestadísticos continuos o modelos de facies discontinuos como los modelos Boolean, de Indicador o de umbral de Gaussian y el modelo de cadena de Markow. Estos modelos de facies son mas adecuados para tratar la conectvidad de estratos geológicos (por ejemplo canales de alta permeabilidad enterrados o barreras de baja permeabilidad que tienen efectos importantes sobre el flujo y especialmente sobre el transporte en los acuíferos. Los modelos genéticos ofrecen nuevas formas de incorporar más geología en las descripciones de facies, un enfoque que está bien desarollado en la industria petrolera, pero insuficientemente en la hidrogeología. Se concluye que los trabajos futuros deberían estar más enfocados en mejorar los modelos de facies, en establecer comparaciones y en diseñar nuevos procedimientos para pruebas in-situ (incuyendo la geofísica) que pueden ayudar a identificar la geometría de las facies y sus propiedades. Un catálogo global de la geometría de las facies de los acuíferos y sus características, que podría combinar la génesis de los sitios y descripciones de los métodos utilizados para evaluar el sistema, sería de gran valor para las aplicaciones prácticas.

References

  1. Aboufirassi M, Marino MA (1984) Cokriging of aquifer transmissivities from field measurements of transmissivity and specific capacity. J Int Assoc Math Geol 16(1):19–35Google Scholar
  2. Abramovich B, Indelman P (1995) Effective permeability of log-normal isotropic random media. J Phys A – Math Gen 28:693–700Google Scholar
  3. Acuna JA, Yortsos YC (1995) Application of fractal geometry to the study of networks of fractures and their pressure transient. Water Resour Res 31(3):527–540Google Scholar
  4. Ahmed S, de Marsily G (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmisivity and specific capacity. Water Resour Res 23(9):1717–1737Google Scholar
  5. Ahmed S, de Marsily G (1988) Combined use of hydraulic and electrical properties of an aquifer in a geostatistical estimation of transmissivity. Ground Water 26(1):78–86Google Scholar
  6. Ahmed S, de Marsily G (1993) Co-kriged estimation of aquifer transmissivity as an indirect solution of inverse problem: a practical approach. Water Resour Res 29(2):521–530Google Scholar
  7. Allard D (1994) Simulating a geological lithofacies with respect to connectivity information using the truncated Gaussian model. In: Armstrong M, Dowd P (eds) Geostatistical simulations: proceedings of the geostatistical simulation workshop, Fontainebleau, France 27–28 May 1993. Kluwer, Norwell, MA, pp 197–211Google Scholar
  8. Anda K, Kostner A, Neman SP (2003) Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augères, France, revisited. Hydrogeol J 11:521–535Google Scholar
  9. Andersson JA, (1984) Stochastic model of a fractured rock conditioned by measured information. Water Resour Res 20:79–88Google Scholar
  10. Anderson MP (1989) Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments. Geol Soc Am Bull 101(4):501–511Google Scholar
  11. Anguy Y, Ehrlich R, Ahmadi A, Quintard M (2001) On the ability of a class of random models to portray the structural features of real, observed, porous media in relation to fluid flow. Cem Concr Compos 23:313–330Google Scholar
  12. Anguy Y, Ehrlich R, Mercet C (2003) Is it possible to characterize the geometry of a real porous medium by a direct measurement on a finite section? 1. The phase-retrieval problem. Math Geol 35(7):763–788Google Scholar
  13. Armstrong M, Galli A, Le Loc’h G, Geffroy F, Eschard F (2003) Plurigaussian simulations in geosciences. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Aupepin JR, Davy P, Bour O (2001) Hydraulic properties of two-dimensional fracture networks following a power law length distribution. 2: Permeability of networks based on a lognormal distribution of apertures. Water Resour Res 37(8):2079–2095CrossRefGoogle Scholar
  15. Bai T, Pollard DD (2000) Closely spaced fractures in layered rocks: initiation mechanism and propagation kinematics. J Struct Geol 22:1409–1425Google Scholar
  16. Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rocks. Water Resour Res 24(10):1796–1804Google Scholar
  17. Besbes M et al (2003) Système Aquifère du Sahara Septentrional. Gestion commune d’un bassin transfrontière [Aquifer systems of northern Sahara. Common management of a trans-boundary basin]. La Houille Blanche 5:128–133Google Scholar
  18. Betheke C (1985) A numerical model of compaction-driven groundwater flow and heat transport and its application to paleohydrology of intracratonic sedimentary basins. J Geophys Res 90(B8):6817–6828Google Scholar
  19. Beucher H, Fournier F, Doliguez B, Rozanski J (1999) Using 3D seismic derived information in lithofacies simulations. A case study. Annual technical conference and exhibit of the Society of Petroleum Engineering, Houston, Oct. 3–6, 1999. Proceedings, SPE 56736, pp 581–592Google Scholar
  20. Billaux D (1990) Hydrogéologie des milieux fracturés. Géométrie, connectivité, et comportement hydraulique [Hydrogeology of fractured media. Geometry, connectivity, and hydraulic behavior]. Ph.D. dissertation, Ecole des Mines de Paris, Document du BRGM no186, Orléans, France, 310 ppGoogle Scholar
  21. Burrus J (1997) Contribution à l’étude du fonctionnement des systèmes pétroliers: apport d’une modélisation bi-dimensionnelle [Contribution to the study of hydrocarbon systems: role of 2-D modeling]. Doctoral thesis, Paris School of Mines, Fontainebleau, 309 ppGoogle Scholar
  22. Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durand E, Feuga B, Peaudecerf P (1990a) Modelling fracture flow with a discrete fracture network: calibration and validation—1. The flow model. Water Resour Res 26(1):479–489Google Scholar
  23. Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990b) Modelling fracture flow with a discrete fracture network: calibration and validation—2. The transport model. Water Resour Res 26(1):491–500Google Scholar
  24. Caers J, Strebelle S, Payrazyan K (2003) Stochastic integration of seismic data and geologic scenarios: a West Africa submarin channel saga. The Leading Edge 22(3):192Google Scholar
  25. Cardwell WT, Parsons RL (1945) Average permeabilities of heterogeneous oil sands. Trans Am Inst Min Metall Pet Eng 160:34–42Google Scholar
  26. Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol28(4):453–476Google Scholar
  27. Carle SF, Fogg GE (1997) Modeling spatial variability with one- and multi-dimensional continuous Markov chains. Math Geol 29(7):891–918Google Scholar
  28. Carle SF, LaBolle EM, Weissmann GS, VanBrocklin D, Fogg GE (1998) Conditional simulation of hydrofacies architecture: a transition probability/Markov approach. In: Fraser GS, Davis JM (eds) Hydrogeologic models of sedimentary aquifers, SEPM concepts in Hydrogeol. Environ. Geol, vol. 1. Soc. For Sediment. Geol, Tulsa, OK, pp 147–170Google Scholar
  29. Carluer N, de Marsily G (2004) Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fats flow components, water quality and landscape management. J Hydrol 285:76–95Google Scholar
  30. Carrayrou J, Mose R, Behra P (2004) Operator-splitting for reactive transport and comparison of mass balance errors. J Contam Hydrol 68:239–268Google Scholar
  31. Castro MC, Goblet P, Ledoux E, Violette S, de Marsily G (1998) Noble gases as natural tracers of water circulation in the Paris basin. Part 2. Calibration of a groundwater flow model using noble gas isotope data. Water Resour Res 34(10):2467–2483CrossRefGoogle Scholar
  32. Certes C, de Marsily G (1991) Application of the pilot point method to the identification of aquifer transmissivity. Adv Water Resour 14(5):284–300Google Scholar
  33. Chang J, Yortsos YC (1990) Pressure-transient analysis of fractal reservoirs. SPE Formation Evaluation 5(3) Art. Nb. SPE 18710:631-643Google Scholar
  34. Chiles JP, de Marsily G (1993) Flow in fractured rocks. In: Bear J, de Marsily G, Tsang CF (eds) Flow and transport in fractured rocks. Accademic, OrlandoGoogle Scholar
  35. Chiles JP, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York, 695 ppGoogle Scholar
  36. Cooley RL (1997) Confidence interval for ground-water models using linearization, likelihood and bootstrap methods. Ground Water 35(5):869–880Google Scholar
  37. Dagan G (1985) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21(1):65–72Google Scholar
  38. Dagan G (1989) Theory of flow and transport in porous formations. Springer, Berlin Heidelberg New YorkGoogle Scholar
  39. Dagan G (2002) An overview of stochastic modeling of groundwater flow and transport: from theory to applications. EOS, Trans Am Geophys Union 83(53):31–12Google Scholar
  40. Darcy H (1856) Les fontaines publiques de la Ville de Dijon [The public fountains of the City of Dijon]. Dalmont, ParisGoogle Scholar
  41. Delay F, Porel G, (2003) Inverse modeling in the time domain for solving diffusion in a heterogeneous rock matrix. Geophys Res Lett 30(3):DOI 10.1029/2002GL016428Google Scholar
  42. Delhomme JP (1976) Application de la théorie des variables régionalisées dans les sciences de l’eau [Application of the theory of regionalized variables to water sciences]. Doctoral thesis, University Paris VIGoogle Scholar
  43. Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 1(5):251–266Google Scholar
  44. Delhomme JP (1979) Spatial variability and uncertainty in groundwater flow parameters: a geostatistical approach. Water Resour Res 15(2):269–280Google Scholar
  45. de Marsily G (1978) De l’identification des systèmes hydrologiques [On the calibration of hydrologic systems]. Doctoral thesis, University Paris VIGoogle Scholar
  46. de Marsily G (1985) Flow and transport in fractured rocks: connectivity and scale effects. Invited paper. International symposium on the hydrogeology of rocks of low permeability, Tucson AZ (USA), January 1985, International Association of Hydrogeologists, Memoires, XXGoogle Scholar
  47. de Marsily G (1986) Quantitative hydrogeology. Groundwater hydrology for engineers. Academic, New York, 440 ppGoogle Scholar
  48. de Marsily G, Combes P, Goblet P (1992) Comments on “Groundwater models cannot be validated”. In: Konikow LF, Bredehoeft JD (eds), Adv Water Res 15:367–369Google Scholar
  49. de Marsily G, Schafmeister MT, Delay F, Teles V (1998) On some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol J 6:115–130Google Scholar
  50. de Marsily G, Delhomme JP, Coudrain-Ribstein A, Lavenue AM (2000) Four decades of inverse problems in hydrogeology. In: Zhang D, Winter CL (eds) Theory, modeling, and field investigation in hydrogeology. Geological Society of America Special Paper 348, pp 1–17Google Scholar
  51. Desbarats AJ (1987) Numerical estimation of effective permeability in sand–shale formations. Water Resour Res 23(2) 273–286Google Scholar
  52. Doliguez B, Grandjeon D, Joseph P, Eschard R, Beucher H (1999) How can stratigraphic modeling help constrain geostatistical reservoir simulations? In: Harbaugh JW et al (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM Sp. Publ. No. 62, pp 239–244Google Scholar
  53. Dupuit J (1857) Mémoire sur les mouvements de l’eau à travers les terrains perméables [Report on the movement of water through permeable terrains]. Compte Rendu Académie des Sciences, Section MécaniqueGoogle Scholar
  54. Dupuit J (1863) Etude théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables [Theoretical and practical studies on the movement of water in uncovered canals and permeable terrains]. Dunod, ParisGoogle Scholar
  55. Euzen T, Joseph P, du Fornel E, Lesur S, Grandjeon D, Guillocheau F (2004) Three-dimensional stratigraphic modelling of the Grès d’Annot system, Eocene-Oligocene, SE France. In: Joseph P, Lomas SA (eds) Deep-water sedimentation in the Alpine basin of SE France: new perspectives on the Grès d’Annot and related systems. Geological Society, London, Special Publications 221, pp 161–180Google Scholar
  56. Fogg GE (1986) Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system. Water Resour Res 22(5):679– 694Google Scholar
  57. Fogg GE, Noyes CD, Carle SF (1998) Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol J 6(1):131–143Google Scholar
  58. Fogg GE, Carle SF, Green C (2000) A connected-network paradigm for the alluvial aquifer system. In: Zhang D (ed) Theory, modelling and field investigation in hydrogeology: a special volume in honor of Shlomo P. Neuman’s 60th birthday. GSA, Boulder, CO, GSA Special Paper 348, pp 25–42Google Scholar
  59. Fournier F, Desquirez PY, Macrides CG, Rademakers M (2002) Quantitative lithostratigraphic interpretation of seimic data for characterization of the Unayzah formation in central Saudi Arabia. Geophysics 67(5):1372–1381Google Scholar
  60. Freeze RA (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media. Water Resour Res 11(5):725–741Google Scholar
  61. Garven G (1995) Continental-scale groundwater flow and geologic processes. Annu Rev Earth Planet Sci 24:89–117Google Scholar
  62. Ge S, Garven G (1992) Hydromechanical modeling of tectonically driven groundwater flow with application to the Arkoma forland basin. J Geophy Res 97(B6):9119–9144Google Scholar
  63. Gelhar LW (1976) Effects of hydraulic conductivity variation on groundwater flow. In: Second international symposium on stochastic hydraulics, International Association for Hydraulic Research, Lund, SwedenGoogle Scholar
  64. Gelhar LW (1993) Stochastic subsurface hydrology. Prentice-Hall, Old Tappan, NJGoogle Scholar
  65. Glassley WE, Simmons AM, Kercher JR (2002) Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl Geochem 17:699–708Google Scholar
  66. Gonçalvès J, Violette S, Guillaucheau F, Pagel M, Bruel D, Robin C, de Marsily G, Ledoux E (2004a) Using a 3-D basin model as an interactive tool with diagenesis analysis, example of the Paris basin, France. Basin Res (in press)Google Scholar
  67. Gonçalvès J, Violette S, Robin C, Bruel D, Guillocheau F, Ledoux E (2004b) Combining a compaction model and a facies model to reproduce permeability fields at the regional scale. Phys Chem Earth 29:17–24Google Scholar
  68. Grandjeon D (1996) Modélisation stratigraphique déterministe: conception et applications d’un modèle diffusif 3-D multilithologique [Deterministic startigraphic modeling: conception and application of a 3-D diffusive multi-lithologic model]. Ph.D. dissertation, Rennes University, France, 280 ppGoogle Scholar
  69. Grandjeon D, Joseph P (1999) Concepts and applications of a 3-D multiple lithology, diffusive model in stratigraphic modeling. In: Harbaugh JW et al (eds) Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. SEPM Sp. Publ. No. 62, pp 197–210Google Scholar
  70. Grandjeon D, Joseph P, Doliguez B (1998) Using a 3-D stratigraphic model to optimize reservoir description. Hart’s Pet Eng Int November:51–58Google Scholar
  71. Haldorsen HH, Chang DM (1986) Notes on stochastic shales from outcrop to simulation models. In: Lake LW, Carol HB Jr (eds) Reservoir characterization. Academic, New York, pp 152–167Google Scholar
  72. Haldorsen HH, Damsleth E (1990) Stochastic modeling. J Pet Technol 42:404–412, 929–930Google Scholar
  73. Harvey CF, Gorelick S (2000) Rate-limited mass transfer or macrodispersion: which dominates plume evolution at the MAcroDispersion Experiment (MADE) Site? Water Resour Res 36(3):637CrossRefGoogle Scholar
  74. He C, Edwards MG, Durlofsky LJ (2002) Numerical calculation of equivalent cell permeability tensors for general quadrilateral control volumes. Comput Geosci 6:29–47Google Scholar
  75. Heller L, Paola C (1992) The large-scale dynamics of grain-size variations in alluvial basins 2. Application to syntectonic conglomerate. Basin Res 4:91–102Google Scholar
  76. Herweijer JC (1997) Sedimentary heterogeneity and flow towards a well: assessment of flow through heterogeneous formations. Doctoral thesis, Vrije Universiteit Utrecht, The Nethelands, defended on January 7, 1997Google Scholar
  77. Herweijer JC (2004) The impact of sedimentological heterogeneity on flow and transport at the Columbus Air Force Base Test Site. Hydrogeol J (submitted)Google Scholar
  78. Houel P, Granjeon D, Robin C, Le Gallo Y (2005) La modélisation géologique 3D du bassin de Paris comme base à l’élaboration d’une modélisation hydrogéologique (3-D geologic modeling of the Paris basin as the basis for developing a hydrogeological model). In: International conference on clay repository, Tours, France, March 14–18, 2005, ANDRA, Ed. Elsevier (to appear, 2005 or 2006)Google Scholar
  79. Hu LY (2000) Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math Geol 32(1):87–108Google Scholar
  80. Hu LY (2002) Combination of dependent realizations within the gradual deformation method. Math Geol 34(8):953–963Google Scholar
  81. Hu LY, Blanc G, Noetinger B (2001a) Gradual deformation and iterative calibration of sequential stochastic simulations. Math Geol 33(4):475–489Google Scholar
  82. Hu LY, Le Ravalec M, Blanc G (2001b) Gradual deformation and iterative calibration of truncated Gaussian simulations. Pet Geosci 7:S25–S30Google Scholar
  83. Indelman P, Rubin Y (1996) Average flow in heterogeneous media of trending hydraulic conductivity. J Hydrol 183(1–2):57–68Google Scholar
  84. Jacod J, Joathon P (1971) Use of random-genetic models in the study of sedimentary processes. J Int Assoc Math Geol 3(3):219–233Google Scholar
  85. Jacod J, Joathon P (1972) Conditional simulation of sedimentary cycles in three dimensions. In: Merriam DF (ed) Proceedings of the international sedimentary congress, Heidelberg, August 1971. Plenum, New York, 139–165Google Scholar
  86. Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Bonnet S, Robin C, Guillocheau F, Ramstein G, Kageyama M, (2004) Palaeoclimate and palaeomorphologic impacts on the Paris basin hydrogeology. IGC – Florence, August 20–28, 2004, commGoogle Scholar
  87. Journel AG (1983) Nonparametric estimation of spatial distribution. Math Geol 15(3):445–468Google Scholar
  88. Journel AG, Alabert FG (1990) New method for reservoir mapping. J Pet Technol February 42(2):212–218Google Scholar
  89. Journel AG, Gomez-Hernandez J (1993) Stochatic imaging of the Wilmington clastic sequence. Soc Pet Eng Form Eval March 8(1):33–40Google Scholar
  90. Journel AG, Isaaks EK (1984) Conditional indicator simulation: application to a Saskatcheouan uranium deposit. Math Geol 16(7):685–718Google Scholar
  91. Kolterman CE, Gorelick SM (1992) Paleoclimatic signature in terrestrial flood deposits. Science 256:1775–1782Google Scholar
  92. Kolterman CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658Google Scholar
  93. Konikow LF, Bredehoeft JD (1992a) Groundwater models cannot be validated. Adv Water Res 15(1):75–83CrossRefGoogle Scholar
  94. Konikow LF, Bredehoeft JD (1992b) Reply to comment. Adv Water Res 15(6):370–371Google Scholar
  95. Krishan S, Journel AG (2003) Spatial connectivity: from variograms to multiple-point measures. Math Geol 35(8):915–925Google Scholar
  96. LaBolle EM, Fogg GE (2001) Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system. Transp Porous Media 42:155–179Google Scholar
  97. Landau LD, Lifschitz EM (1960) Electrodynamics of continuous media. Pergamon, Oxford, UKGoogle Scholar
  98. Lantuéjoul C (1997a) Iterative algorithms for conditional simulations. In: Baafi EY, Schofield NA (eds) Geostatistics Wollongong ‘96, vol 1. Kluwer, Dordrecht, Netherlands, 27–40Google Scholar
  99. Lantuéjoul C (1997b) Conditional simulation of object-based models. In: Jeulin D (ed) Advances in theory and applications of random sets. World Scientific, Singapore, pp. 271–288Google Scholar
  100. Lantuéjoul C (2002) Geostatistical simulation. Models and algorithms. Springer, Berlin Heidelberg New YorkGoogle Scholar
  101. Lavenue AM, Ramarao BS, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 2—Application. Water Resour Res 31(3):495–516Google Scholar
  102. Lavenue MA, de Marsily G (2001) Three-dimensional interference-test interpretation in a fractured/unfractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675CrossRefGoogle Scholar
  103. Long JCS, Billaux D (1987) From field data to fracture network modelling: an example incorporating spatial structure. Water Resour Res 23(7):1201–1216Google Scholar
  104. Long JCS, Karasaki K, Davey A, Peterson J, Landsfeld M, Kemeny J, Martel S (1991) An inverse approach to the construction of fracture hydrology models conditioned by geophysical data: An example from the validation exercises at the Stripa Mine. Int J Rock Mech Min Sci Geomech Abstr 28:121–142Google Scholar
  105. Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266Google Scholar
  106. Matheron G (1965) Les variables régionalisées et leur estimation [Regionalized variables and their estimation]. Masson, Paris, 185 ppGoogle Scholar
  107. Matheron G (1967) Eléments pour une théorie des milieux poreux [Elements for a theory of porous media]. Masson, ParisGoogle Scholar
  108. Matheron G (1969) Les processus d’Ambarzoumian et leur application en géologie [The Ambarzoumian processes and their application in geology]. Technical Report N-131, Centre de Géostatistique, Ecole des Mines de Paris, Fontainebleau, FranceGoogle Scholar
  109. Matheron G (1973) Le krigeage disjonctif [Disjunctive kriging]. Note interne N-360, Centre de Géostatistique, Fontainebleau, 40 ppGoogle Scholar
  110. Matheron G (1976) A simple substitute for conditional expectation: the disjunctive kriging. In: Guarascio M, David M, Huijbregts C (eds) Advanced geostatistics in the mining industry. Reidel, Dordrecht, Holland, pp. 221–236Google Scholar
  111. Matheron G, Beucher H, de Fouquet C, Galli A, Guerillot D, Ravenne C (1987) Conditional simulation of the geometry of fluvio-deltaic reservoirs. Society of Petroleum Engineers SPE 16753Google Scholar
  112. Matheron G, Beucher H, de Fouquet C, Galli A, Ravenne C (1988) Simulation conditionnelle à trois faciès dans une falaise de la formation du Brent [Conditional simulations with three facies in a cliff of the Brent formation]. Sciences de la Terre, Série Informatique, Nancy, vol 28, pp 213–249Google Scholar
  113. Meier PM, Carrera J, Sanchez-Vila X (1999) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1025Google Scholar
  114. Muskat M (1949) Physical principles of oil production. McGraw-Hill, New York, 922 ppGoogle Scholar
  115. Neuman SP, Witherspoon PA (1968) Theory of flow in aquicludes adjacent to slightly leaky aquifers. Water Resour Res 4(1):103–112Google Scholar
  116. Neuzil CE (1994) How permeable are clays and shales? Water Resour Res 30(2)145–150Google Scholar
  117. Niemann JD, Bras RL, Veneziano D (2003) A physically based interpolation method for fluvially eroded topography. Water Resour Res 39(1):1017. DOI 10.1029/2001WR001050Google Scholar
  118. Noetinger B (1994) The effective permeability of a heterogeneous porous medium. Trans Porous Media 15:99–127Google Scholar
  119. Noetinger B (2000) Computing the effective permeability of log-normal permeability fields using renormalization methods. C R Acad Sci Paris/Earth Planet Sci 331:353–357Google Scholar
  120. OSS (2003) Système Aquifère du Sahara Septentrional. Gestion commune d’un bassin transfrontière [Aquifer systems of northern Sahara. Common management of a trans-boundary basin] Synthesis Report, 129 pp. Ed. Observatoire du Sahara et du Sahel, Tunis, TunisiaGoogle Scholar
  121. Paola C, Heller PL, Angevine CL (1992) The large scale dynamics of grain-size variations in alluvial basins, 1. Theory Basin Res 4:73–90Google Scholar
  122. Paramelle, l’Abbée (1856) L’art de découvrir les sources [The art of discovering springs]. Dalmont et Dunod, ParisGoogle Scholar
  123. Pelletier I (1997) Traitement des données de réservoir en vue d’une simulation de diagenèse. Application à l’illitisation du BRENT dans un champ de la Mer du Nord [Reservoir data processing for a simulation of diagenesis. Application to the illitisation of the BRENT reservoir in a North Sea oil field]. Doctoral thesis, University Denis Diderot (Paris VII), 139 ppGoogle Scholar
  124. Person M, Raffsenperger JP, Ge S, Garven G (1996) Basin-scale hydrogeologic modelling. Rev Geophys 34(1):61–87Google Scholar
  125. Person M, Goodwin LB, Rawlings G, Connell S (2000) The evolution of fault-zone permeability and groundwater flow patterns within the Albuquerque Basin of the Rio Grande Rift, NM. J Geochem Explor 69–70:565–568Google Scholar
  126. Poirée C (1979) L’eau en poésie [Water in poetry]. Gallimard, ParisGoogle Scholar
  127. Pozdniakov S, Tsang C-F (2004) A self-consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium. Water Resour Res 40(W05105) DOI 10.1029/2003WR002617Google Scholar
  128. Prickett TA (1968) Comparison between analog and digital simulation techniques for aquifer evaluation. In: International Association of Scientific Hydrology, symposium on the use of analog and digital computers in hydrology, Tucson, AZ, pp 624–634Google Scholar
  129. Prickett TA (1975) Modeling techniques for groundwater evaluation. In: Ven Chow T (ed) Advances in hydrosciences, vol 10. Academic, New York, pp 1–143Google Scholar
  130. Quiblier J, Trémolières P, Zinszner B (1980) A tentative fault propagation description by 3D finite element analysis. Tectonophysics 68:9–212Google Scholar
  131. Quiquerez A, Allemand P, Dromart G (2000) DIBAFILL: a 3-D two-lithology diffusive model for basin infilling, Comput Geosci 26(9–10):1029–1042Google Scholar
  132. Ramarao BS, Lavenue AM, de Marsily G, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: part 1—Theory and computational experiments. Water Resour Res 31:3475–3493Google Scholar
  133. Raoult Y (1999) La nappe de l’Albien dans le bassin de Paris: de nouvelles idées pour de vieilles eaux [The Albian aquifer in the Paris basin: new ideas for old waters]). Doctoral thesis, University Pierre et Marie Curie, Paris VI, 170 ppGoogle Scholar
  134. Reis LC, Hu LY, de Marsily G, Eschard R (2000) Production data integration using a gradual deformation approach: application to an oil field (offshore Brazil). Society of Petroleum Engineering, Paper SPE 63064Google Scholar
  135. Renard Ph, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20(5–6):253–278Google Scholar
  136. Renshaw CE, Pollard DD (1994) Numerical simulation of fracture set formation: a fracture mechanics model consistent with experimental observations. J Geophys Res 99:9359–9372Google Scholar
  137. Renshaw CE, Pollard DD (1995) Numerical generation of physically based fracture networks. In: Myer LR, Tsang CF, Cook NGW, Goodman RE (eds) Fractured and jointed rock masses, conference proceedings. Balkema, Rotterdam, pp 43–50Google Scholar
  138. Revil A, Cathles LM III (2002) Fluid transport by solitary waves along growing faults: a field example from the South Eugene Island Basin, Gulf of Mexico. Earth Planet Sci Lett 202(2):321–335Google Scholar
  139. Ritzi RW, Dominic DF, Brown NR, Kausch KW, McAlenney PJ, Basisal MJ (1995) Hydrofacies distribution and correlation in the Miami Valley aquifere system. Water Resour Res 31(12):3271–3281Google Scholar
  140. Rivard C, Delay F (2004) Simulations of solute transport in heterogeneous media using 2D percolation networks: Uncorrelated conductivity fields. Hydrogeol J (in press)Google Scholar
  141. Rivoirard J (1994) Introduction to disjunctive kriging and non-linear geostatistics. Oxford University Press, OxfordGoogle Scholar
  142. Rivoirard J (2000) Cours de géostatistique multivariable [Lecture notes for multivariate geosatistics]. Note C-172, Ecole des Mines de Paris, Centre de Géostatistique, FontainebleauGoogle Scholar
  143. Roth C, Chilès JP, de Fouquet C (1998) Combining geostatistics and flow simulators to identify transmissivity. Adv Water Resour 21:555–565Google Scholar
  144. Smith L, Freeze RA (1979) Stochastic analysis of steady state groundwater flow in a bounded domain. 1. One-dimensional simulations. 2. Two-dimensional simulations. Water Resour Res 15(3):521–528 and 15(6):1543–1559Google Scholar
  145. Strebelle S (2002) Conditional simulation of complex geological structures using multiple point statistics. Math Geol 34(1):1–22Google Scholar
  146. Taylor WL, Pollard DD, Aydin A (1999) Fluid flow in discrete joint sets: field observations and numerical simulations. J Geophys Res 104:28983–29006Google Scholar
  147. Teles V, Bravard JP, de Marsily G, Perrier E (2001) Modelling of the construction of the Rhône alluvial plain since 15,000 years BP. Sedimentalogy 48:1209–1224Google Scholar
  148. Teles V, Delay F, de Marsily G (2004) Comparison between different methods for characterizing the heterogeneity of alluvial media: groundwater flow and transport simulations. J Hydrol 294(1–3):103–121Google Scholar
  149. Tetzlaff DM, Harbaugh JW (1989) Simulating clastic sedimentation. Van Nostrand Reinhold, New York, 202 ppGoogle Scholar
  150. Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 2:519–524Google Scholar
  151. Theis CV (1967) Aquifers and models. In: Marino MA (ed) Proceedings of the symposium on groundwater hydrology. American Water Resources Association, p 138Google Scholar
  152. Thiem G (1906) Hydrologische Methoden [The hydrogeologic method]. Gebhardt, Leipzig, 56 ppGoogle Scholar
  153. Tsang CF, Doughty C (2003) Multirate flowing fluid electric conductivity logging method. Water Resour Res 39(12):1353Google Scholar
  154. Tyson HN, Weber EM (1964) Groundwater management for the nation’s future. Computer simulations of groundwater basins. Am Soc Civil Eng J Hydrol Div 90(HY):59–77Google Scholar
  155. Vail PR, Audemard F, Bowman SA, Eisner PN, Perez-Cruz C (1991) The stratigraphic signatures of tectonics, eustacy, and sedimentology—an overview: In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 617–657Google Scholar
  156. Voss CI (1998) Groundwater modeling: simply powerful (editorial). Hydrogeol J 6(4):6Google Scholar
  157. Walton WC, Prickett TA (1963) Hydrogeologic electric analog computers, American Society of Civil Engineering. J Hydraulics Div Paper # 89, pp 67–91. Also reproduced In: Freeze RA, Back W (eds) Benchmark papers in geology, Physical hydrogeology, part II. Well and aquifer hydraulics, vol 72. Hutchinson Ross, Stroudsburg, Pennsylvania, Paper #17, pp 243–267, 1983Google Scholar
  158. Warren JE, Price HS (1961) Flow in heterogeneous porous media. Soc Pet Eng J I:153–169Google Scholar
  159. Webb EK (1995) Simulation of braided channel topology and topography. Water Resour Res 31:2603–2611Google Scholar
  160. Webb EK, Anderson MP (1996) Simulation of preferential flow in three-dimensional, heterogeneous, conductivity fields with realistic internal architecture. Water Resour Res 32:533–545Google Scholar
  161. Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65Google Scholar
  162. Weissmann GS, Carle SF, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resour Res 35(6):1761–1770Google Scholar
  163. Weissmann GS, Zhang Y, LaBolle EM, Fogg GE (2002) Dispersion of groundwater age in an alluvial aquifer system. Water Resour Res 38(10):1198. DOI 10.1029/2001WR000907CrossRefGoogle Scholar
  164. Western AW, Blöschl G, Grayson RB (2001) Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour Res 37(1):83–97Google Scholar
  165. Wu H, Pollard DD (2002) Imaging 3D fracture networks around boreholes. Am Assoc Pet Geol Bull 86:593–604Google Scholar
  166. Zaoui J (1961) Quelques applications des ordinateursaux problèmes d’écoulements souterrains [Some applications of computers to the problem of groundwater flow]. International Association of Hydraulic Research 9th general assemble, Dubrovnik, YugoslaviaGoogle Scholar
  167. Zimmerman DA, de Marsily G, Gotaway CA, Marietta MG, Axness CL, Beauheim R, Bras R, Carrera J, Dagan G, Davies PB, Gallegos D, Galli A, Gomez-Hernandez J, Grindrod P, Gutjahr AL, Kitanidis P, Lavenue AM, McLaughlin D, Neuman SP, Ramarao BS, Ravenne C, Rubin Y (1998) A comparaison of seven geostatistically-based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413Google Scholar
  168. Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39(3):1051–1070Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Gh. de Marsily
    • 1
  • F. Delay
    • 2
  • J. Gonçalvès
    • 1
  • Ph. Renard
    • 3
  • V. Teles
    • 4
  • S. Violette
    • 1
  1. 1.Université Pierre et Marie Curie, Laboratoire de Géologie AppliquéeParis Cedex 05France
  2. 2.Université de Poitiers, Earth Sciences BuildingPoitiers cedexFrance
  3. 3.University of Neuchatel, Centre of HydrogeologyNeuchatelSwitzerland
  4. 4.Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRSGif sur Yvette CedexFrance

Personalised recommendations