Hydrogeology Journal

, Volume 13, Issue 1, pp 37–46 | Cite as

The conceptualization model problem—surprise

  • John BredehoeftEmail author


The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20–30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance.


Numerical modeling Conceptual models Groundwater mangement Data collection and analysis Mistaken model predictions 


C’est le modèle conceptuel qui se trouve à base d’une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l’analyse des eaux souterraines présente des difficultés lorsqu’il s’agit de choisir le modèle conceptuel approprié. Il n’existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l’analyste doit rester ouvert au fait que le modèle conceptuel peut bien changer lorsque des nouvelles informations apparaissent. Dans l’analyse finale le hydrogéologue prend une décision subjective sur le modèle conceptuel approprié. Le problème du le modèle conceptuel ne doit pas rendre le modèle inutilisable. Ce problème introduit une incertitude qui n’est pas toujours reconnue. Les incertitudes du modèle conceptuel deviennent plus importantes dans les cases de prévisions à long terme dans l’analyse de performance.


La base para hacer un análisis de un modelo es el modelo conceptual. Se define aquí la sorpresa como los datos nuevos que convierten en incoherente al modelo conceptual previamente aceptado; tal como se define aquí esto representa un cambio de paradigma. Los datos empíricos limitados indican que estas sorpresas suceden entre un 20 a un 30% de los análisis de modelos. Esto sugiere que los analistas de modelos de agua subterránea tienen dificultades al seleccionar el modelo conceptual apropiado. No hay otra solución disponible a este problema del modelo conceptual diferente de: (1) Recolectar tanta información como sea posible, mediante la utilización de todos los métodos aplicables, lo cual puede resultar en que esta nueva información ayude a cambiar el modelo conceptual vigente, y (2) Que el analista de modelos se mantenga siempre abierto al hecho de que un modelo conceptual puede cambiar de manera total, en la medida en que se colecte mas información. En el análisis final el hidrogeólogo toma una decisión subjetiva en cuanto al modelo conceptual apropiado. El problema de la conceptualización no produce modelos inútiles. El problema presenta una incertidumbre, la cual a menudo no es tenida en cuenta de manera adecuada. Esta incertidumbre en los modelos conceptuales se aumenta, cuando se hacen predicciones a largo plazo del comportamiento de un sistema dado.



I wish to thank several of my colleagues for their thoughtful comments and review. In particular my thanks go to Jesus Carrera, Leonard Konikow, Shlomo Neuman, Naomi Oreskes, Robert Schneider, Clifford Voss, and Chunmiao Zheng, and for their suggestions and constructive criticism


  1. Alley WM, Emery PA (1986) Groundwater model of the Blue River basin, Nebraska—twenty years later. J Hydrol 85:225–249CrossRefGoogle Scholar
  2. Anderson MP, Woessner WW (1992) The role of postaudit in model validation. Adv Water Resour 15:167–173CrossRefGoogle Scholar
  3. Anderson TW (1968) Electric analog analysis of ground-water depletion in central Arizona. U.S. Geological Survey Water-Supply Paper 1860, 21 ppGoogle Scholar
  4. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40:340–345PubMedGoogle Scholar
  5. Bredehoeft JD (2003) From models to performance assessment—the conceptualization problem. Ground Water 41:571–577Google Scholar
  6. Carrera J, Neuman SP (1986) Estimation of aquifer parameters under steady-state and transient conditions. Water Resour Res 22:199–210Google Scholar
  7. Flavelle P, Nguyen S, Napier W (1991) Lessons learned from model validation—a regulatory perspective: in GEOVAL-1990: symposium on validation of gepsphere flow and transport models. Organization for Economic Co-Operation (OECD), Nuclear Energy Agency, Paris, France, pp 441–448Google Scholar
  8. Hill MC, Banta ER, Harbaugh AW, Anderman ER (2000) Modflow-2000, the U.S. Geological Survey modular ground-water model: user guide to observation, sensitivity, and parameter estimation processes, and three post-processing programs: U.S. Geological Survey Open-File Report 2000-184, 209 ppGoogle Scholar
  9. Jacob CE (1940) On the flow of water in an elastic artesian aquifer. Transactions of American Geophysical Union, part 2, pp 585–586Google Scholar
  10. Jorgensen DG (1981) Geohydrologic models of the Houston District, Texas. Ground Water 28:418–428Google Scholar
  11. Konikow LF (1986) Predictive accuracy of a ground-water model—lessons from a postaudit. Ground Water 24:173–184Google Scholar
  12. Konikow LF (1995) The value of postaudits in groundwater model applications. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. Lewis Publishers—CRC, Boca Raton, FL, pp 59–78Google Scholar
  13. Konikow LF, Bredehoeft JD (1974) Modeling flow and chemical-quality changes in an irrigated stream-aquifer system. Water Resour Res 10:546–562Google Scholar
  14. Konikow LF, Person M (1985) Assessment of long-term salinity changes in an irrigated stream-aquifer system. Water Resour Res 21:1611–1624Google Scholar
  15. Konikow LF, Sanford WE, Campbell PJ (1997) Constant concentration boundary condition: lessons from the HYDRCOIN variable-density groundwater benchmark problem. Water Resour Res 33:2253–2261CrossRefGoogle Scholar
  16. Konikow LF, Swain LA (1990) Assessment of predictive accuracy of a model of artificial recharge effects in the Coachella Valley, California. In: Simpson ES, Sharp JM Jr (eds) Selected papers on hydrogeology from the 28th Geological Congress. Verlag Heinz Heise, Washington, DC, USA, pp 433–449Google Scholar
  17. Lewis BD, Goldstein FJ (1982) Evaluation of a predictive ground-water solute-transport model at the Idaho National Engineering Laboratory testing station, Idaho. U.S. Geological Survey Water Resources Investigation 82–85:71Google Scholar
  18. Los Alamos National Laboratory (LANL) (1997) Performance Assessment and Composite Analysis for the Los Alamos Material Disposal Area G: Report-54G-013.R.2 (Appendix 2c—analysis of liquid phase transport in the unsaturated zone at a mesa top disposal facility, p 28)Google Scholar
  19. Mason RG (1958) A magnetic survey off the west coast of North America between latitudes 36 and 38° N and 121 and 128° W. Geophys J 1:320-329Google Scholar
  20. Neuman SP (2003) Maximum likelihood Bayesian averaging of alternative conceptual mathematical models. Stochastic Environ Res Risk Assess 17(5):291–305, doi: 10.1007/s00477-003-0151-7CrossRefGoogle Scholar
  21. Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, U.S. Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  22. Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in earth sciences. Science 263:641–646Google Scholar
  23. Oreskes N, Belitz K (2001) Philosophical issues in model assessment. Chapter 3. In: Anderson MG, Bates PD (eds) Model validation: perspectives in hydrological sciences. Wiley, NewYork, pp 23–41Google Scholar
  24. Robertson JB (1974) Digital modeling of radioactive and chemical waste transport in the Snake River Plain aquifer at the National reactor Testing Station, Idaho. U.S. Geological Survey Open-File Report. IDO—22054, 41 ppGoogle Scholar
  25. Sun MZ, Jeng MC, Yeh WWG (1995) A proposed geological parameterization method of parameter identification in three dimensional groundwater modeling. Water Resour Res 31:89–102CrossRefGoogle Scholar
  26. Swain LA (1978) Predicted water-level and water-quality effects of artificial recharge in the upper Coachella Valley, California, using a finite-element digital model. U.S. Geological Survey Water-Resources Investigation 77–29:54Google Scholar
  27. Theis CV (1935) The relation between lowering the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Transactions American Geophysical Union, 16th Annual Meeting, part 2, pp 519–524Google Scholar
  28. Tsai FTC, Sun NZ, Yeh WWG (2003a) Global-local optimization for parameter structure identification in three-dimensional groundwater modeling. Water Resour Res 39:1043CrossRefGoogle Scholar
  29. Tsai FTC, Sun NZ, Yeh WWG (2003b) A combinatorial optimization scheme for parameter structure identification in groundwater modeling. Ground Water 41:156–169Google Scholar
  30. Vine FJ, Mathews DH (1963) Magnetic anomalies over oceanic ridges. Nature 199:947–949Google Scholar
  31. Zheng C, Bennett G (1995) Applied contaminant transport modeling. Wiley, NewYorkGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.The Hydrodynamics GroupSausalitoUSA

Personalised recommendations