Hydrogeology Journal

, Volume 14, Issue 1–2, pp 203–224 | Cite as

Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman

  • Juerg M. Matter
  • H. N. Waber
  • S. Loew
  • A. Matter


A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths of Wadi Abyadh and Wadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer along Wadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.


Arid regions Groundwater flow Groundwater recharge Hydrochemical modeling Stable isotopes 


On a développé un modèle régional hydrogéochimique pour évaluer l’évolution géochimique des différentes eaux souterraines dans le système aquifère de l’intérieur d’Oman. Avec la contribution des isotopes d’environnement, le modèle est capable de fournir des informations qualitatives et quantitatives sur la recharge, les directions d’écoulement et sur les connections hydrauliques entre les différents aquifères du système. La source principale pour l’aquifère situé au long de la direction d’écoulement des oueds de Abdyah et de M’uaydin dans le piémont est l’eau souterraine provenant des zones de haute altitude de Jabal Akhbar ainsi que l’infiltration locale au long des canaux de l’oued. Par contre, à part d’une petite contribution provenant des infiltrations locaux et de Jabal Akhbar, l’ aquifère alluvial de Wadi Halfayan est en principal alimenté par la recharge latérale provenant des ophiolites situées dans la partie est. Les plus importantes sources de recharge dans l’aval de l’aquifère de la Plaine Alluviale sont l’infiltration directe et le ruissellement provenant d’une source d’humidité qui s’approche d’Oman par le sud. Le modèle montre que la principale évolution géochimique se produise au long de la direction d’écoulement qui part de piémont de la Plaine Alluviale du Sud, où le procès de dédolomisation est responsable pour les changements observés dans la composition géochimique et en carbone des eaux.


Un modelo hidrogeoquímico regional fue desarrollado, para evaluar la evolución geoquímica de diferentes aguas subterráneas en un sistema acuífero aluvial ubicado en el interior de Omán. El modelo, en combinación con isótopos ambientales, es capaz de obtener información cualitativa y cuantitativa sobre recarga, direcciones de flujo de agua subterránea y sobre las conexiones hidráulicas entre diferentes acuíferos. La fuente principal de agua para el acuífero aluvial en el piedemonte son las aguas subterráneas, a lo largo de las direcciones de flujo del Wadi Abyadh y del Wadi M’uaydin, desde las áreas de gran altura de Jabal Akhdar y como infiltración local a lo largo de los canales del wadi. En contraste, el acuífero aluvial del piedemonte a lo largo del Wadi Halfayn, esta alimentado principalmente por recarga lateral desde las partes bajas de las montañas de ofiolitas hacia el Este, además por pequeñas contribuciones desde el Jabal Akhdar e infiltración local. Siguiendo gradiente abajo en el acuífero de la Llanura Aluvial del Sur, allí tanto la infiltración directa de lluvia, como la escorrentía superficial constituyen fuentes significativas de recarga, las cuales se originan en una fuente de humedad que llega a Omán proveniente del Sur. El modelo muestra, que la evolución geoquímica principal de las aguas subterráneas en el aluvión, sucede a lo largo de la dirección de flujo, que va desde el piedemonte hacia la Llanura Aluvial Sur, en donde el proceso de des-dolomitización es el responsable de los cambios observados en la composición química y también del contenido de isótopos de carbono en estas aguas.



We thank the Ministry of Regional Municipalities Environment and Water Resources in the Sultanate of Oman for their permission to do this field work, for their logistic and scientific support and for the chemical analyses of all water samples. We are deeply grateful to Zaher Al Suleimani, Director General of Groundwater Resources, Ahmed Al Malki, Acting Director of Research and Suleiman Al Abri, former Director of the Ministry of Water Resources Regional Office Nizwa for their assistance during this project. We also thank several people, namely Hashim Al Balushi, Salim Al Ma’shari and Sidney Da Silva from the Ministry of Water Resources for their assistance in the field. The authors are grateful to Phil Macumber and an anonymous reviewer for the constructive reviews


  1. Adar EM, Neuman SP (1988) Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data, II. Application to Aravaipa Valley in southern Arizona, USA. J Hydrol 97:279–302CrossRefGoogle Scholar
  2. Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution, 3rd edn. Balkema, RotterdamGoogle Scholar
  3. Atkins WS (1986) Hydrogeology and water resources of the Greater Manah area. Study Report, Ministry of Water Resources, Sultanate of OmanGoogle Scholar
  4. Back W, Hanshaw BB, Plummer LN, Rahn PH, Rightmire CT, Meyer R (1983) Process and rate of dedolomitization: mass transfer and 14C dating in a regional carbonate aquifer. Geolo Soc Am Bull 94:1415–1429CrossRefGoogle Scholar
  5. Ball JW, Nordstrom DK (1991) User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. U.S. Geological Survey, Reston, VA, USAGoogle Scholar
  6. Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim Cosmochim Acta 39:489–504CrossRefGoogle Scholar
  7. Brantley SL, Chen Y (1995) Chemical weathering rates of pyroxenes and amphiboles. In: White AF, Brantley SL (eds) Chemical weathering of silicate minerals. American Mineral Society. Washington, DC, USA. Rev Mineral 31:119–172Google Scholar
  8. Burns SJ, Matter A (1995) Geochemistry of carbonate cements in surficial alluvial conglomerates and their paleoclimatic implications, Sultanate of Oman. J Sedimen Res A65(1):170–177Google Scholar
  9. Busenberg E, Plummer LN (1982) The kinetics of dissolution of dolomite in CO2–H2O systems at 1.5 to 65°C and 0 to 1 atm . Am J Sci 282:45–78Google Scholar
  10. Busenberg E, Plummer LN (1989) Thermodynamics of magnesian calcite solid-solution at 25 degrees C and 1 atm total pressure. Geochim Cosmochim Acta 53(6):1189–1208CrossRefGoogle Scholar
  11. Cansult/Gartner and Lee (1986) Origin and age of groundwater in Oman. A study of environmental isotopes. PAWR Report 86/7, Sultanate of OmanGoogle Scholar
  12. Chou L, Garrels RM, Wollast R (1989) Comparitive study of the kinetics and mechanisms of dissolution of carbonate minerals. Chem Geol 78:269–282CrossRefGoogle Scholar
  13. Clark ID (1987) Groundwater Resources in the Sultanate of Oman: origin, circulation times, recharge processes and paleoclimatology. Isotopic and geochemical approaches. PhD Thesis, Université de Paris-Sud, Centres d’Orsay, FranceGoogle Scholar
  14. Clark ID, Fritz PE (1997) Environmental isotopes in hydrogeology, 1st edn. CRC Press, Boca RatonGoogle Scholar
  15. Clark ID, Fontes JC (1990) Paleoclimatic reconstructions in Northern Oman based on carbonates from hyperalkaline groundwaters. Quat Res 33:320–336Google Scholar
  16. Clark ID, Fritz P, Quinn OP, Rippon PW, Nash H, Bin Ghalib Sayyid Barghash, Al Said (1987) Modern and fossil groundwater in an arid environment: A look at the hydrogeology of Oman. In: Isotope techniques in water resources development. International Atomic Energy Agency, Vienna, pp 167–187Google Scholar
  17. Edmunds WM, Walton NRG (1980) A geochemical and isotopic approach to recharge evalution in semi-arid zones; past and present. In: Fontes JC (ed) Arid-zone hydrology, investigation with isotope techniques. International Atomic Energy Agency, Vienna, pp 47–68Google Scholar
  18. Edmunds WM, Gaye CB (1994) Estimating the spatial variability of groundwater recharge in the Sahel using chloride. J Hydrol 156:47–59CrossRefGoogle Scholar
  19. Gibb A, Partner (1976) Water Resources Survey of Northern Oman. Report Directorate General of Finance, Sultanate of OmanGoogle Scholar
  20. Glennie KW, Boeuf MGA, Hughes Clarke MW, Moody-Stuart M, Pilaar WFH, Reinhardt BME (1974) Geology of the Oman mountains. Verh Kon Ned Geol Minjnb Gen, Delft, NetherlandsGoogle Scholar
  21. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536CrossRefPubMedGoogle Scholar
  22. Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin, New YorkGoogle Scholar
  23. Issar A, Nativ R, Karnieli A, Gat JR (1983) Isotopic evidence of the origin of groundwater in arid zones. In: Anon. Isotope hydrology. International Atomic Energy Agency, ViennaGoogle Scholar
  24. Lippard SJ, Shelton AW, Gass IE (eds) (1986) The Ophiolite of Northern Oman. Geological Society of London Memoir No. 11Google Scholar
  25. MacDonald M (1994) Adam water supply. Borehole Drilling and Testing Report, Ministry of Water Resources, Sultante of OmanGoogle Scholar
  26. MacDonald M (1982) Saiq water supply study. Report, Ministry of Water Resources, Sultanate of OmanGoogle Scholar
  27. Macumber PG (2003) Lenses, plumes and wedges in the Sultanate of Oman: a challenge for groundwater management. In: Alsharhan AS, Wood WW (eds) Water resources perspectives: evaluation, management and policy. Elsevier Science, Amsterdam, The Netherlands, pp 349–370Google Scholar
  28. Macumber PG (1998) The Cable Tool program and groundwater flow in the Eastern Batinah alluvial aquifer. Report of Directorate of Water Resources Assessment, Ministry of Water Resources, Sultanate of Oman, pp 159Google Scholar
  29. Macumber PG (1997) Al Khawd Fan groundwater investigation. Final report, Directorate General of Water Resources Assessment, Ministry of Water Resources, Sultanate of Oman, pp 65Google Scholar
  30. Macumber PG (1995) Freshwater lenses in the hyper-arid region of Central Oman. In: International Conference on Water Management in Arid Countries, Muscat, March 1995, pp 480–487Google Scholar
  31. Macumber PG, Niwas JM, Al Abadi A, Seneviratne R (1997) A new isotopic water line for northern Oman. In: Proceedings of the Third Gulf Water Conference, Muscat 1997, pp 141–162Google Scholar
  32. Macumber PG, Bin Ghalib Sayyid Barghash, Kew GA, Tennakoon TB (1995) Hydrogeologic implications of a cyclonic rainfall event in central Oman. In: Nash H, McCall GJH (eds) Groundwater quality. Chapman and Hall, London, pp 87–97Google Scholar
  33. Matter JM (2001) Geochemical evolution and hydrodynamics of groundwaters in the Alluvial Aquifer of the Dakhiliya Area, Sultanate of Oman. PhD Thesis, Swiss Federal Institute of Technology Zurich, SwitzerlandGoogle Scholar
  34. MWR (1994) Wadi Samail detailed resource assessment. Water Resources Assessment Report, Ministry of Water Resources, Sultanate of OmanGoogle Scholar
  35. MWR (1995) Data Compilation and Review: Dakhliya Region. Report, Ministry of Water Resources, Sultanate of OmanGoogle Scholar
  36. MWR (1996) Jabal Akhdar Hydrogeological Assessment. Water Resources Assessment Report, Ministry of Water Resources, Sultanate of OmanGoogle Scholar
  37. Nativ R, Dahan O, Nissim I, Adar EM, Geyh ME (1995) Questions pertaining to isotopic and hydrochemical evidence of fracture-controlled water flow and solute transport in a chalk aquitard. In: Adar EM, Leibundgut C (eds) Application of tracers in arid hydrology. IAHS Press, Wallingford, UK, pp 317–327Google Scholar
  38. Neal C, Stanger G (1985) Past and present serpentinisation of ultramafic rocks; an example from the Semail Ophiolite nappe of northern Oman. In: Drever JI (ed) The chemistry of weathering. NATO ASI Series, Series C, D. Reidel Publishing Company, Dordrecht-Boston, pp 249–275Google Scholar
  39. Pallister JS, Hopson CA (1981) Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering and a model of a spreading ridge magma chamber. J Geophys Res 86(B4):2593–2644Google Scholar
  40. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 99-4259Google Scholar
  41. Pearson FJ Jr, Fisher DW, Plummer LW (1978) Correction of ground-water chemistry and carbon isotopic composition for effects of CO2 outgassing. Geochim Cosmochim Acta 42:1799–1807CrossRefGoogle Scholar
  42. Peters T, Nicolas A, Coleman RGE (eds) (1990) Ophiolite genesis and evolution of the oceanic lithosphere, series: petrology and structural geology vol 5. In: Conference Proceedings of the Ophiolite Conference. Kluwer Academic Publishers, DordrechtGoogle Scholar
  43. Plummer LN (1975) Mixing of sea water with calcium carbonate groundwater. Memoire Geolog Soc Am 142:219–236Google Scholar
  44. Plummer LN, Parkhurst DL, Wigley TML (1979) Critical review of the kinetics of calcite dissolution and precipitation. In: Jenne EA (ed) Chemical modeling in aqueous systems. Am Chem Soc Symp Ser 93:537–573Google Scholar
  45. Plummer LN, Busby JF, Roger WL, Hanshaw BB (1990) Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resour Res 26(9):1981–2014CrossRefGoogle Scholar
  46. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path, version 2.0. U.S. Geological Survey Water Resources Investigations Report, pp 94–4169Google Scholar
  47. Rabu D, Le-Metour J, Béchennec F, Beurrier M, Villey M, Bourdillon-Jeudy de Grissac C (1990) Sedimentary aspects of the Eo-Alpine cycle on the northeastern edge of the Arabian Platform (Oman Mountains). In: Robertson AHF, Searle MP, Ries AC (eds) The geology and tectonics of the Oman region. Geol Soc London Special Publ 49:49–68Google Scholar
  48. Rathmayr B (2000) Geology and hydrogeology of the Birkat al Mawz-Izki Area (Sultanate of Oman). MS Thesis, University of Bern, SwitzerlandGoogle Scholar
  49. Rimstidt JD (1997) Quartz solubility at low temperatures. Geochim Cosmochim Acta 61(13):2553–2558CrossRefGoogle Scholar
  50. Robertson AHF, Searle MP, Ries AC (eds) (1990) The geology and tectonics of the Oman region. Geol Soc London Special Publ 49Google Scholar
  51. Rozanski K, Araguás-Araguás LE (1992) Statistical treatment of data on environmental isotopes in precipitation. Int Atomic Energy Agency Tech Rep Ser :pp 331Google Scholar
  52. Simmers I (ed) (1997) Recharge of Phreatic aquifers in (semi-) arid areas, International Association of Hydrogeologists, vol 19. Balkema, RotterdamGoogle Scholar
  53. Stalder PJ (1975) Cementation of Pliocene-Quaternary fluviatile clastic deposits in and along the Oman Mountains. Geologie en Mijnbouw 54(3–4):148–156Google Scholar
  54. Stanger G (1986) The hydrogeology of the Oman Mountains. PhD Thesis, Open University London, UKGoogle Scholar
  55. Swart PK, Burns SJ, Leder JJ (1991) Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature. Chem Geol 86:89–96Google Scholar
  56. Taylor D, Jones PD, Wigley TML (1990) Rainfall in Oman: data acquisition, statistics and climatology. Report Ministry of Water Resources, Muscat, OmanGoogle Scholar
  57. Weyhenmeyer C (2000) Origin and evolution of groundwaters in the alluvial aquifer of the Eastern Batinah Coastal Plain, Sultanate of Oman. PhD Thesis, University of Bern, SwitzerlandGoogle Scholar
  58. Weyhenmeyer C, Burns SJ, Waber HN, Macumber PG, Matter A (2002) Isotope study of moisture sources, recharge area, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman. Water Resour Res 38(10):2-1–2-22CrossRefGoogle Scholar
  59. Wushiki H (1991) 18O/16O and D/H of the meteoric waters in South Arabia. Mass Spectrom 39(5):239–250Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Juerg M. Matter
    • 1
    • 2
  • H. N. Waber
    • 3
  • S. Loew
    • 1
  • A. Matter
    • 3
  1. 1.Geological Institute ETH Zuerich, Engineering GeologyETH HoenggerbergZuerichSwitzerland
  2. 2.Present address: Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  3. 3.Institute of Geological SciencesUniversity of BernBernSwitzerland

Personalised recommendations