Hydrogeology Journal

, Volume 13, Issue 1, pp 98–111 | Cite as

Aquifers and hyporheic zones: Towards an ecological understanding of groundwater

  • Peter J. HancockEmail author
  • Andrew J. Boulton
  • William F. Humphreys


Ecological constraints in subsurface environments relate directly to groundwater flow, hydraulic conductivity, interstitial biogeochemistry, pore size, and hydrological linkages to adjacent aquifers and surface ecosystems. Groundwater ecology has evolved from a science describing the unique subterranean biota to its current form emphasising multidisciplinary studies that integrate hydrogeology and ecology. This multidisciplinary approach seeks to elucidate the function of groundwater ecosystems and their roles in maintaining subterranean and surface water quality. In aquifer-surface water ecotones, geochemical gradients and microbial biofilms mediate transformations of water chemistry. Subsurface fauna (stygofauna) graze biofilms, alter interstitial pore size through their movement, and physically transport material through the groundwater environment. Further, changes in their populations provide signals of declining water quality. Better integrating groundwater ecology, biogeochemistry, and hydrogeology will significantly advance our understanding of subterranean ecosystems, especially in terms of bioremediation of contaminated groundwaters, maintenance or improvement of surface water quality in groundwater-dependent ecosystems, and improved protection of groundwater habitats during the extraction of natural resources. Overall, this will lead to a better understanding of the implications of groundwater hydrology and aquifer geology to distributions of subsurface fauna and microbiota, ecological processes such as carbon cycling, and sustainable groundwater management.


Stygofauna Hyporheic zone Aquifer ecosystems Groundwater/surface-water interactions Human impacts 


Les contraintes écologiques dans les environnements de subsurface sont en relation directe avec les écoulements des eaux souterraines, la conductivité hydraulique, la biogéochimie des milieux interstitiels, la taille des pores, et les liens hydrologiques avec les aquifères et les écosystèmes adjacents. L’écologie des eaux souterraines a évolué d’une science décrivant uniquement les biotopes souterrains à des études multidisciplinaires qui intègrent l’écologie et l’hydrogéologie. L’approche multidisciplinaire cherche à élucider le fonctionnement des écosystèmes souterrains et leur rôle consistant à maintenir la qualité des eaux souterraines et de surface. Dans les écotones des eaux de la surfaces des aquifères, les gradients géochimiques et les biofilms microbiologiques contrôlent les transformations de la qualité de l’eau. La faune de subsurface (stygofauna) construisent les biofilms, altèrent la taille des pores interstitiels à travers leur mouvement, et transportent physiquement des matériaux à travers l’environnement des eaux souterraines. Par ailleurs, les changements de leur population signalent un déclin de la qualité de l’eau.

Une meilleure intégration de l’écologie des eaux souterraines, de la biogeochimie, et de l’hydrogéologie pourra faire avancer de manière efficace de notre compréhension des écosystèmes souterrains, et spécialement en terme de bioremédiation des eaux souterraines contaminées, de maintenance et d’amélioration de la qualité des eaux de surface dépendant des écosystèmes souterrains, et l’amélioration de la protection des habitats des eaux souterraines durant l’extraction des ressources naturelles. En général, cela conduira à une meilleure compréhension de l’implication de l’hydrogéologie et de la géologie des aquifères à la distribution de la faune de subsurface et aux microbiota, aux processus écologiques tels que les cycles du carbone, et la gestion durable des eaux souterraines.


Los entornos ecológicos en ambientes subsuperficiales están relacionados directamente con el flujo de agua subterránea, la conductividad hidráulica, biogeoquímica intersticial, tamaño de los poros, y vínculos hidrológicos con acuíferos adyacentes y ecosistemas superficiales. La ecología del agua subterránea ha evolucionado a partir de una ciencia que describe la biota subterránea única hasta alcanzar la forma actual que enfatiza estudios multidisciplinarios que integran hidrogeología y ecología. Este enfoque multidisciplinario busca clarificar la función de los ecosistemas de agua subterránea y sus roles en el mantenimiento de la calidad de agua superficial y subterránea. En ecotonos de agua superficial y de acuíferos, los gradientes geoquímicos y biopelículas microbiales median transformaciones de calidad de agua. La fauna subsuperficial (estigofauna) se alimenta de biopeliculas, altera el tamaño de los poros intersticiales mediante su movimiento, y transporta físicamente material a través del ambiente de aguas subterráneas. Además, los cambios en sus poblaciones aportan señales de decadencia de calidad de agua. La mejor integración de ecología de aguas subterráneas, biogeoquímica, e hidrogeología incrementará significativamente nuestro entendimiento de ecosistemas subterráneos, especialmente en términos de bioremediación de aguas subterráneas contaminadas, mantenimiento o mejoramiento de calidad de agua superficial en ecosistemas dependientes de agua subterránea, y protección mejorada de habitats de agua subterránea durante la extracción de recursos naturales. Sobretodo, esto conducirá a un mejor entendimiento de las implicaciones de la hidrología de aguas subterráneas y geología del acuífero, de las distribuciones de fauna subsuperficial y microbiota, procesos ecológicos tal como ciclado de carbono, y gestión sostenible de aguas subterráneas.



The invitation by Dr Clifford Voss to present a perspective on the role of groundwater ecology in the future of hydrogeology, and his comments, advice and constructive criticism of this manuscript are appreciated. Marc Seifert, Dr Paul Frazier, and three referees (including Prof. Janine Gibert and Dr Carol Wicks) are thanked for encouraging and perspicacious comments on earlier drafts. Robert Schneider provided editorial advice. Part of this work was done while the senior author was in receipt of a postdoctoral fellowship funded by ECOWISE Environmental at the University of New England.


  1. Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. U.S. Geological Survey Circular 1186. Colorado, DenverGoogle Scholar
  2. Bärlocher F, Murdoch JH (1989) Hyporheic biofilms—a potential food source for interstitial animals. Hydrobiologia 184:61–69Google Scholar
  3. Barton HA, Taylor MR, Pace NR (2004) Molecular phylogenetic analysis of a bacterial community in an oligotrophic cave environment. Geomicrobiol J 21:11–20CrossRefGoogle Scholar
  4. Baxter CV, Hauer FR (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 57:1470–1481CrossRefGoogle Scholar
  5. Botosaneau L (1986) Stygofauna mundi. A faunistic, distributional and ecological synthesis of the world fauna inhabiting subterranean waters. EJ Brill, LeidenGoogle Scholar
  6. Boulton AJ (2000a) The subsurface macrofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego. 337–362Google Scholar
  7. Boulton AJ (2000b) River ecosystem health down under: assessing ecological condition in riverine groundwater zones in Australia. Ecosys Health 6:108–118CrossRefGoogle Scholar
  8. Boulton AJ (2001) Twixt two worlds: Taxonomic and functional biodiversity at the surface water/groundwater interface. Rec West Aust Mus (Suppl) 64:1–13Google Scholar
  9. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Ann Rev Ecol Syst 29:59–81CrossRefGoogle Scholar
  10. Boulton AJ, Depauw S, Marmonier P (2002a) Hyporheic dynamics in a degraded rural stream carrying a ‘sand slug’. Verh Internat Verein Limnol 28:120–124Google Scholar
  11. Boulton AJ, Hakenkamp C, Palmer M, Strayer D (2002b) Freshwater meiofauna and surface water-sediment linkages: A conceptual framework for cross-system comparisons. In: Rundle SD, Robertson AL, Schmid-Araya JM (eds) Freshwater meiofauna biology and ecology. Backhuys, Leiden, The Netherlands, 241–259Google Scholar
  12. Boulton AJ, Humphreys WF, Eberhard SM (2003) Imperilled subsurface waters in Australia: Biodiversity, threatening processes and conservation. Aquat Ecosys Health Manage 6:41–54CrossRefGoogle Scholar
  13. Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666Google Scholar
  14. Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshwat Biol 37:1–33Google Scholar
  15. Chapelle FH (2001) Ground-water microbiology and geochemistry. John Wiley & Sons, New YorkGoogle Scholar
  16. Charette M (2001) Submarine groundwater discharge creates “Iron Curtain”. Woods Hole Oceanogr Inst Ann Rep 2001:23–24Google Scholar
  17. Claret C, Marmonier P, Dole-Olivier M-J, Creuzé des Châtelliers M, Boulton AJ, Castella E (1999) A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Arch Hydrobiol 145:385–403Google Scholar
  18. Clifton C, Evans R (2001) Environmental flow requirements of groundwater dependent ecosystems. Environmental flows initiative technical report number 2, Commonwealth of AustraliaGoogle Scholar
  19. Coineau N (2000) Adaptions to interstitial groundwater life. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: Subterranean ecosystems. Elsevier, Amsterdam, 189–210Google Scholar
  20. Culver D, Jones W, Holsinger J (1992) Biological and hydrological investigation of the Cedars, Lee County, Virginia, an ecologically significant and threatened karst area. In: Stanford JA, Simons J (eds) Proc First Internat Groundwat Ecol Conf, pp 281–290Google Scholar
  21. Daly D, Dassargues A, Drew D, Dunne S, Goldsheider N, Neale S, Popescu IC, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345CrossRefGoogle Scholar
  22. Danielopol DL (1994) What can we expect from groundwater ecologists? In: Stanford JA, Valett HM (eds) Proc Second Internat Groundwat Ecol Conf, pp 13–20Google Scholar
  23. Danielopol DL, Creuzé des Châtelliers M, Moeszlacher F, Pospisil P, Popa R (1994) Adaptation of Crustacea to interstitial habitats: a practical agenda for ecological studies. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 218–244Google Scholar
  24. Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Env Conserv 30:104–130CrossRefGoogle Scholar
  25. Danielopol DL, Marmonier P (1992) Aspects of research on groundwater along the Rhône, Rhine and Danube. Reg Rivers: Res Manage 7:5–16Google Scholar
  26. Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Trends Ecol Evol 15:223–224CrossRefGoogle Scholar
  27. Dent CL, Schade JJ, Grimm NB, Fisher SG (2000) Subsurface influences on surface biology. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 381–404Google Scholar
  28. Dole-Olivier M-J, Creuzé des Châtelliers M, Marmonier P (1993) Repeated gradients in subterranean landscape. Example of the stygofauna in the alluvial floodplain of the Rhône River (France). Arch Hydrobiol 127:451–471Google Scholar
  29. Dole-Olivier M-J, Marmonier P, Creuzé des Châtelliers M, Martin D (1994) Interstitial fauna associated with the alluvial floodplains of the Rhône Rover (France). In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 313–346Google Scholar
  30. Duff JH, Triska FH (1990) Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aq Sci 47:1140–1147Google Scholar
  31. Dumas P (2002) Stability of interstitial crustacean communities in an isolated alluvial aquifer. Hydrobiologia 468:63–76CrossRefGoogle Scholar
  32. Engel AS, Stern LA, Porter ML, Bennett PC (2002) Sulfur cycling and nutrient spiraling in karst. Geol Soc Am Meeting Abstract No. 96–13Google Scholar
  33. Findlay S, Sobczak WV (2000) Microbial communities in hyporheic sediments. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 287–306Google Scholar
  34. Forti P, Galdenzi S, Sarbu SM (2002) The hypogenic caves: a powerful tool for the study of seeps and their environmental effects. Cont Shelf Res 22:2373–2386CrossRefGoogle Scholar
  35. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, LondonGoogle Scholar
  36. Galloway DL, Alley WM, Barlow PM, Reilly TE, Tucci P (2003) Evolving issues and practices in managing ground-water resources: Case studies on the role of science. USGS Circular 1247. Colorado, DenverGoogle Scholar
  37. Graening GO (2000) Ecosystem dynamics of an Ozark Cave. PhD, University of Arkansas, USAGoogle Scholar
  38. Gibert J (1991) Groundwater systems and their boundaries: Conceptual framework and prospects in groundwater ecology. Verh Internat Verein Limnol 24:1605–1608Google Scholar
  39. Gibert J, Dole-Olivier M-J, Marmonier P, Vervier P (1990) Surface water-groundwater ecotones. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. UNESCO/Parthenon Publishing, London, 199–225Google Scholar
  40. Gibert J, Danielopol DL, Stanford JA (eds) (1994) Groundwater ecology. Academic Press, San DiegoGoogle Scholar
  41. Gibert J, Deharveng L (2002) Subterranean ecosystems: A truncated functional biodiversity. BioScience 52:473–481Google Scholar
  42. Giere O (1993) Meiobenthology. The microscopic fauna in aquatic sediments. Springer-Verlag, BerlinGoogle Scholar
  43. Griebler C (2001) Microbial ecology of subsurface ecosystems. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology: A tool for management of water resources. European Commission, Luxembourg 81–108Google Scholar
  44. Grimes KG, Hamilton-Smith E, Spate AP (1995) South east karst province of South Australia. Aust Cave Karst Manag Assoc Report. Adelaide, South AustraliaGoogle Scholar
  45. Gounot AM (1994) Microbial ecology of groundwaters. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 189–215Google Scholar
  46. Gunderson LH, Holling CS (2001) Panarchy: understanding transformations in systems of humans and nature. Island Press, New YorkGoogle Scholar
  47. Gurevich MS (1962) The role of microorganisms in producing the chemical composition of ground water. In: Kuznetsov SI (ed) Geologic activity of microorganisms. Trans Institut Microbiol, New York IX: 65–77Google Scholar
  48. Haack SK, Bekins BB (2000) Microbial populations in contaminant plumes. Hydrogeol J 8:63–76CrossRefGoogle Scholar
  49. Hakenkamp CC, Palmer MA (2000) The ecology of hyporheic meiofauna. In: Jones JB, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego, 307–336Google Scholar
  50. Hamilton-Smith E, Eberhard SM (2000) Conservation of cave communities in Australasia. In: Wilkens H, Culver DC, Humphreys WF (eds.) Ecosystems of the world, Vol 30, Subterranean ecosystems. Elsevier, Amsterdam, 647–664Google Scholar
  51. Hancock P (2002) Human impacts on the stream-groundwater exchange zone. Environ Manag 29:761–781Google Scholar
  52. Hancock P (2004) The effects of river stage fluctuations on the hyporheic and parafluvial ecology of the Hunter River, New South Wales. PhD, University of New England, ArmidaleGoogle Scholar
  53. Hancock P, Boulton AJ, Raine A (2001) Surface-subsurface hydrological connectivity in sand-bed streams. In: Rutherfurd I, Sheldon F, Brierley G, Kenyon C (eds) Proc Third Australian Stream Management Conf, pp 259–264Google Scholar
  54. Hatton T, Evans R (1998) Dependence of ecosystems on groundwater and its significance to Australia. Land Water Resour Res Develop Corp Occ Pap 12/98Google Scholar
  55. Hendricks SP, White DS (1995) Seasonal biogeochemical patterns in surface water, subsurface hyporheic, and riparian ground water in a temperate stream ecosystem. Arch Hydrobiol 134:459–490Google Scholar
  56. Henry JC, Fisher SG (2003) Spatial segregation of periphyton communities in a desert stream: causes and consequences for N cycling. J N Am Benthol Soc 22:511–527Google Scholar
  57. Herczeg AL, Leaney FW, Dighton JC, Lamontagne S, Schiff SL, Telfer AL, English MC (2003) A modern isotope record of changes in water and carbon budgets in a groundwater-fed lake: Blue Lake, South Australia. Limnol Oceanogr 48:2093–2105Google Scholar
  58. Holmes AJ, Tujula NA, Holley M, Contos A, James JM, Rogers P, Gillings MR (2001) Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ Microbiol 3:256–264CrossRefGoogle Scholar
  59. Holmes RM, Fisher SG, Grimm NB (1994) Parafluvial nitrogen dynamics in a desert stream ecosystem. J N Am Benthol Soc 13:468–478Google Scholar
  60. Hoyle BL, Arthur EL (2000) Biotransformation of pesticides in saturated-zone materials. Hydrogeol J 8:89–103CrossRefGoogle Scholar
  61. Humphreys WF (1999) Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. J Roy Soc West Aust 82:89–98Google Scholar
  62. Humphreys WF (2001) Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Rec West Aust Mus (Suppl) 64:63–83Google Scholar
  63. Humphreys WF (2002) Groundwater ecosystems in Australia: an emerging understanding. Proc International Association Hydrogeologists Conf, pp 1–14Google Scholar
  64. Hutchens E, Radajewski S, Dumont MG, McDonald IR, Murrell JC (2004) Analysis of methanotrophic bacteria in Movile Cave by stable isotopes. Env Microbiol 6:111–120CrossRefGoogle Scholar
  65. Iliffe TM (2000) Anchialine cave ecology. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30. Subterranean ecosystems Elsevier, Amsterdam, 59–76Google Scholar
  66. Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna-rich habitat. J N Amer Benthol Soc 15:508–519Google Scholar
  67. Jones JB, Holmes RM, Fisher SG, Grimm NB (1994) Chemoautotrophic production and respiration in the hyporheic zone of a Sonoran Desert stream. In: Stanford JA, Valett HM (eds) Proc Second Internat Groundwat Ecol Conf, pp 329–338Google Scholar
  68. Jones JB, Fisher SG, Grimm NB (1995) Nitrification in the hyporheic zone of a desert stream ecosystem. J N Amer Benthol Soc 14:249–258Google Scholar
  69. Jones JB, Mulholland PJ (eds) (2000) Streams and ground waters. Academic Press, San DiegoGoogle Scholar
  70. Karanovic T (2004) Subterranean copepods (Crustacea: Copepoda) from arid Western Australia. Crustaceana (Suppl) 3:1–366Google Scholar
  71. Karanovic I, Marmonier P (2003) Three new genera and nine new species of the subfamily Candoninae (Crustacea, Ostracoda, Podocopida) from the Pilbara region (Western Australia). Beaufortia 53:1–51Google Scholar
  72. Kemper KE (2004) Groundwater- from development to management. Hydrogeol J 12:3–5CrossRefGoogle Scholar
  73. Kinkle BK, Kane TC (2000) Chemolithotrophic microorganisms and their potential role in subsurface environments. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30: subterranean ecosystems. Elsevier, Amsterdam, 309–318Google Scholar
  74. Kölbel-Boelke J, Anders E-M, Nehrkorn A (1988) Microbial communities in the saturated groundwater environment. II: Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microb Ecol 16:31–48Google Scholar
  75. Lehman RM, Colwell FS, Bala GA (2001) Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous flow conditions. Appl Environ Microbiol 67:2799–2809CrossRefPubMedGoogle Scholar
  76. Leys R, Watts CHS, Cooper SJB, Humphreys WF (2003) Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57:2819–2834Google Scholar
  77. Malard F, Dole-Olivier M-J, Mathieu J, Stoch F (2001) Sampling manual for the assessment of regional groundwater biodiversity.
  78. Malard F, Gibert J, Laurent R, Reygrobellet J-L (1994) A new method for sampling the fauna of deep karstic aquifers. C R Acad Sci 317:955–966Google Scholar
  79. Malard F, Hervant F (1999) Oxygen supply and the adaptations of animals in groundwater. Freshwat Biol 41:1–30Google Scholar
  80. Malard F, Mathieu J, Reygrobellet J-L, Lafont M (1996) Biomonitoring groundwater contamination: Application to a karst area in Southern France. Aquat Sci 58:159–187CrossRefGoogle Scholar
  81. Malard F, Reygrobellet J-L, Mathieu J, Lafont M (1994) The use of invertebrate communities to describe groundwater flow and contaminant transport in a fractured rock aquifer. Arch Hydrobiol 131:93–110Google Scholar
  82. Mann AW, Horwitz RC (1979) Groundwater calcrete deposits in Australia: some observations from Western Australia. J Geol Soc Aust 26:293–303Google Scholar
  83. Marmonier P, Vervier P, Gibert J, Dole-Olivier M-J (1993) Biodiversity in ground waters. Trends Ecol Evol 8:392–395CrossRefGoogle Scholar
  84. Mauclaire L, Gibert J, Claret C (2000) Do bacteria and nutrients control faunal assemblages in alluvial aquifers? Arch Hydrobiol 148:85–98Google Scholar
  85. McLachlan A, De Ruyck A, Du Toit P, Cockcroft A (1992) Groundwater ecology at the dune/beach interface. Am Water Res Assoc Tech Pub Ser 92:209–216Google Scholar
  86. Mermillod-Blondin F, Gaudet J-P, Gérino M, Desrosiers G, Creuzé des Châtelliers M (2003) Influence of macroinvertebrates on physico-chemical and microbial processes in hyporheic sediments. Hydrol Process 17:779–794CrossRefGoogle Scholar
  87. Moore WS (1999) The subterranean estuary: a reaction zone of ground water and sea water. Mar Chem 65:111–125Google Scholar
  88. Morrice JA, Valett HM, Dahm CN, Campana ME (1997) Alluvial characteristics, groundwater-surface water exchange and hydrological retention in headwater streams. Hydrol Process 11:253–267CrossRefGoogle Scholar
  89. Mösslacher F (2000) Sensitivity of groundwater and surface water crustaceans to chemical pollutants and hypoxia: implications for pollution management. Arch Hydrobiol 149:51–66Google Scholar
  90. Motas CE (1958) Freatobiologia, o noura ramura a limnologiei [Phreatobiology, a new field of limnology]. Natura (Bucharest) 10:95–105Google Scholar
  91. Noltie DB, Wicks CM (2001) How hydrogeology has shaped the ecology of Missouri’s Ozark cavefish, Amblyopsis rosae, and southern cavefish, Typhlicthys subterraneus: insights on the sightless from understanding the underground. Environ Biol Fish 62:171–194CrossRefGoogle Scholar
  92. Notenboom J, Plénet S, Turquin M-J (1994) Groundwater contamination and its impact on groundwater animals and ecosystems. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 477–504Google Scholar
  93. Orghidan T (1959) Ein neuer lebensraum des unterirdischen wassers, der hyporheische biotop [A new habitat of the underground water, the hyporheic biotope]. Arch Hydrobiol 55:392–414Google Scholar
  94. Piotrowski MR (1989) Bioremediation: Testing the waters. Civ Eng 59:51–53Google Scholar
  95. Playford PE (2001) Subterranean biotas in Western Australia. Report for the Environmental Protection Agency, Western AustraliaGoogle Scholar
  96. Plénet S (1995) Freshwater amphipods as biomonitors of metal pollution in surface and interstitial aquatic systems. Freshwat Biol 33:127–137Google Scholar
  97. Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27Google Scholar
  98. Racovitza EG (1907) Essai sur les problémes biospéologiques. Biospeologica I. Arch Zool Exp Gén 4:371–488Google Scholar
  99. Radke L (2000) Solute divides and chemical facies in south-eastern Australian salt lakes and the response of ostracods in time (Holocene) and space. PhD, Australian National University, Canberra, AustraliaGoogle Scholar
  100. Rockhold ML, Yarwood RR, Niemet MR, Bottomley PJ, Selker JS (2002) Considerations for modelling bacterial-induced changes in hydraulic properties of variably saturated porous media. Adv Wat Res 25:477–495CrossRefGoogle Scholar
  101. Romero A (2001) Scientists prefer them blind: the history of hypogean fish research. Environ Biol Fish 62:43–71CrossRefGoogle Scholar
  102. Rouch R (1986) Sur l’ecologie des eaux souterraines dans le karst [On the ecology of subsoil waters in the karst]. Stygologia 2:352–398Google Scholar
  103. Sarbu SM (2000) Movile Cave: a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol. 30: subterranean ecosystems. Elsevier, Amsterdam, pp 319–343Google Scholar
  104. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406Google Scholar
  105. Sket B (1996) The ecology of anchihaline caves. Trends Ecol Evol 11:221–255CrossRefGoogle Scholar
  106. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67CrossRefGoogle Scholar
  107. Spruill TB (2000) Statistical evaluation of effects of riparian buffers on nitrate and groundwater quality. J Environ Qual 29:1523–1538Google Scholar
  108. Stanford J, Simons J (eds) (1992) Proceedings of the First International Conference on Ground Water Ecology, Maryland, American Water Resources AssociationGoogle Scholar
  109. Stephansson O (2003) Theme issue on hydromechanics in geology and geotechnics. Hydrogeol J 11:3–6Google Scholar
  110. Strayer DL (1994) Limits to biological distributions in groundwater. In: Gibert J, Danielopol DL, Stanford JA (eds) Groundwater ecology. Academic Press, San Diego, 287–313Google Scholar
  111. Testa JM, Charette MA, Sholkovitz ER, Allen MC, Rago A, Herbold CW (2002) Dissolved iron cycling in the subterranean estuary of a coastal bay: Waquoit Bay, Massachusetts. Biol Bull 203:255–256Google Scholar
  112. Tóth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4785–4812Google Scholar
  113. Valett HM, Hakenkamp CC, Boulton AJ (1993) Perspectives on the hyporheic zone: integrating hydrology and biology. Introduction. J N Am Benthol Soc 12:40–43Google Scholar
  114. Van der Meer JR, Werlen C, Nishino SF, Spain JC (1998) Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in a contaminated aquifer. Appl Environ Microbiol 64:4185–4193Google Scholar
  115. Vervier P, Gibert J, Marmonier P, Dole-Olivier M-J (1992) A perspective on the permeability of the surface freshwater-groundwater ecotone. J N Amer Benthol Soc 11:93–102Google Scholar
  116. Ward JV (1989) The four-dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8Google Scholar
  117. Ward JV, Palmer MA (1994) Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia 287:147–156Google Scholar
  118. Watts CHS, Humphreys WF (2000) Six new species of Nirridessus and Tjirtudessus (Dytiscidae; Coleoptera) from underground waters in Australia. Records South Aust Mus 33:127–144Google Scholar
  119. Wenderoth DF, Rosenbrock P, Abraham W-R, Pieper DH, Höfle MG (2003) Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol 46:161–176CrossRefPubMedGoogle Scholar
  120. Williams DD (2003) The brackish water hyporheic zone: Invertebrate community structure across a novel ecotone. Hydrobiologia 510:153–173CrossRefGoogle Scholar
  121. Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45CrossRefGoogle Scholar
  122. Winter TC, Harvey JW, Franke OL, Alley WM (1999) Ground water and surface water: A single resource. USGS Circular 1139 Denver, ColoradoGoogle Scholar
  123. Wondzell SM, Swanson FJ (1996) Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream. I: Hydrologic processes. J N Amer Benthol Soc 15:3–19Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Peter J. Hancock
    • 1
    Email author
  • Andrew J. Boulton
    • 1
  • William F. Humphreys
    • 2
  1. 1.Ecosystem ManagementUniversity of New EnglandArmidaleAustralia
  2. 2.Western Australian MuseumFrancis St.PerthAustralia

Personalised recommendations