Advertisement

Hydrogeology Journal

, Volume 13, Issue 1, pp 206–222 | Cite as

Inverse problem in hydrogeology

  • Jesús Carrera
  • Andrés Alcolea
  • Agustín Medina
  • Juan Hidalgo
  • Luit J. Slooten
Paper

Abstract

The state of the groundwater inverse problem is synthesized. Emphasis is placed on aquifer characterization, where modelers have to deal with conceptual model uncertainty (notably spatial and temporal variability), scale dependence, many types of unknown parameters (transmissivity, recharge, boundary conditions, etc.), nonlinearity, and often low sensitivity of state variables (typically heads and concentrations) to aquifer properties. Because of these difficulties, calibration cannot be separated from the modeling process, as it is sometimes done in other fields. Instead, it should be viewed as one step in the process of understanding aquifer behavior. In fact, it is shown that actual parameter estimation methods do not differ from each other in the essence, though they may differ in the computational details. It is argued that there is ample room for improvement in groundwater inversion: development of user-friendly codes, accommodation of variability through geostatistics, incorporation of geological information and different types of data (temperature, occurrence and concentration of isotopes, age, etc.), proper accounting of uncertainty, etc. Despite this, even with existing codes, automatic calibration facilitates enormously the task of modeling. Therefore, it is contended that its use should become standard practice.

Keywords

Inverse problem Aquifer Groundwater Modeling Parameter estimation 

Résumé

L’état du problème inverse des eaux souterraines est synthétisé. L’accent est placé sur la caractérisation de l’aquifère, où les modélisateurs doivent jouer avec l’incertitude des modèles conceptuels (notamment la variabilité spatiale et temporelle), les facteurs d’échelle, plusieurs inconnues sur différents paramètres (transmissivité, recharge, conditions aux limites, etc.), la non linéarité, et souvent la sensibilité de plusieurs variables d’état (charges hydrauliques, concentrations) des propriétés de l’aquifère. A cause de ces difficultés, le calibrage ne peut être séparé du processus de modélisation, comme c’est le cas dans d’autres cas de figure. Par ailleurs, il peut être vu comme une des étapes dans le processus de détermination du comportement de l’aquifère. Il est montré que les méthodes d’évaluation des paramètres actuels ne diffèrent pas si ce n’est dans les détails des calculs informatiques. Il est montré qu’il existe une large panoplie de techniques d ‹inversion : codes de calcul utilisables par tout-un-chacun, accommodation de la variabilité via la géostatistique, incorporation d’informations géologiques et de différents types de données (température, occurrence, concentration en isotopes, âge, etc.), détermination de l’incertitude. Vu ces développements, la calibration automatique facilite énormément la modélisation. Par ailleurs, il est souhaitable que son utilisation devienne une pratique standardisée.

Resumen

Se sintetiza el estado del problema inverso en aguas subterráneas. El énfasis se ubica en la caracterización de acuíferos, donde los modeladores tienen que enfrentar la incertidumbre del modelo conceptual (principalmente variabilidad temporal y espacial), dependencia de escala, muchos tipos de parámetros desconocidos (transmisividad, recarga, condiciones limitantes, etc), no linealidad, y frecuentemente baja sensibilidad de variables de estado (típicamente presiones y concentraciones) a las propiedades del acuífero. Debido a estas dificultades, no puede separarse la calibración de los procesos de modelado, como frecuentemente se hace en otros campos. En su lugar, debe de visualizarse como un paso en el proceso de entendimiento del comportamiento del acuífero. En realidad, se muestra que los métodos reales de estimación de parámetros no difieren uno del otro en lo esencial, aunque sí pueden diferir en los detalles computacionales. Se discute que existe amplio espacio para la mejora del problema inverso en aguas subterráneas: desarrollo de códigos amigables al usuario, acomodamiento de variabilidad a través de geoestadística, incorporación de información geológica y diferentes tipos de datos (temperatura, presencia y concentración de isótopos, edad, etc), explicación apropiada de incertidumbre, etc. A pesar de esto, aún con los códigos existentes, la calibración automática facilita enormemente la tarea de modelado. Por lo tanto, se sostiene que su uso debería de convertirse en práctica standard.

Notes

Acknowledgments

The final manuscript benefitted from comments by Mary Hill, Matt Tonkin and Johan Valstar

References

  1. Akaike H (1974) A new look at statistical model identification. IEEE Trans Automat Contr AC-19:716–722Google Scholar
  2. Akaike H (1977) On entropy maximization principle. In: Krishnaiah PR (ed) Applications of statistics. North Holland, Ámsterdam, pp 27–41Google Scholar
  3. Anderman ER, Hill MC (1999) A new multi-stage ground-water transport inverse method, Presentation, evaluation, and implications. Water Resour Res 35(4):1053–1063Google Scholar
  4. Barlebo HC, Hill MC, Rosbjerg D (2004) Identification of groundwater parameters at Columbus, Mississippi, using three-dimensional inverse flow and transport model. Water Resour Res 40(4):W0421110Google Scholar
  5. Barth GR, Hill MC, Illangasekare TH, Rajaram H (2001) Predictive modeling of flow and transport in a two-dimensional intermediate-scale, heterogeneous porous media. Water Resour Res 37(10):2503–2512Google Scholar
  6. Beck MB (1987) Water quality modelling: a review of the analysis of uncertainty. Water Resour Res 23(8):1393–1442Google Scholar
  7. Bennet RR, Meyer RR (1952) Geology and groundwater resources of the Baltimore area. Mines and Water Resour Bull 4, Maryland Dept of GeologyGoogle Scholar
  8. Beven K (1993) Prophecy, Reality and uncertainty in distributed hydrological modeling. Adv Water Resour 16(1):41–51Google Scholar
  9. Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainity prediction. Hydrol Process 6(3):279–298Google Scholar
  10. Beven KJ, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249:11–29Google Scholar
  11. Bredehoeft J (2004) Modeling: the conceptualization problem-surprise. Hydrogeol J (this issue)Google Scholar
  12. Capilla JE, Gómez-Hernández JJ, Sahuquillo A (1998) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric head data—3. Application to the Culebra formation at the waste isolation pilot plan (WIPP), New Mexico, USA. J Hydrol 207(3–4):254–269Google Scholar
  13. Carrera J (1987) State of the art of the inverse problem applied to the flow and solute transport problems. In: Groundwater flow and quality modeling, NATO ASI Ser: 549–585Google Scholar
  14. Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady-state conditions, 1. Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210Google Scholar
  15. Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady-state conditions, 2. Uniqueness, stability and solution algorithms. Water Resour Res 22(2):211–227Google Scholar
  16. Carrera J, Neuman SP (1986c) Estimation of aquifer parameters under transient and steady-state conditions, 3. Application to synthetic and field data. Water Resour Res 22(2):228–242Google Scholar
  17. Carrera J, Navarrina F, Vives L, Heredia J, Medina A (1990a) Computational aspects of the inverse problem. In Proc. of VIII international conference on computational methods in water resources. CMP, pp 513–523Google Scholar
  18. Carrera J, Heredia J, Vomvoris S, Hufschmied P (1990b) Fracture Flow Modelling: Application of automatic calibration techniques to a small fractured Monzonitic Gneiss Block. In: Neuman N (ed) Proc hydrogeology of low permeability environments, IAHPV, Hydrogeology, selected papers, vol 2, pp 115–167Google Scholar
  19. Carrera J, Glorioso L (1991) On Geostatistical Formulations of the Groundwater Flow Inverse Problem. Adv Water Resour 14(5):273–283Google Scholar
  20. Carrera J, Medina A, Galarza G (1993a) Groundwater inverse problem. Discussion on geostatistical formulations and validation. Hydrogéologie (4):313–324Google Scholar
  21. Carrera J, Mousavi SF, Usunoff E, Sanchez-Vila X, Galarza G (1993b) A discussion on validation of hydrogeological models. Reliability Eng Syst Saf 42:201–216Google Scholar
  22. Carrera J, Medina A (1994) An improved form of adjoint-state equations for transient problems. In: Peters, Wittum, Herrling, Meissner, Brebbia, Grau, Pinder (eds) Proc X international conference on methods in water resources, pp 199–206Google Scholar
  23. Castro A, Vazquez-Suñe E, Carrera J, Jaen M, Salvany JM (1999) Calibración del modelo regional de flujo subterráneo en la zona de Aznalcóllar, España: ajuste de las extracciones [Calibration of the groundwater flow regional model in the Aznalcollar site, Spain: extractions fit]. In Tineo A (ed) Hidrología Subterránea. II,13. Congreso Argentino de Hidrogeología y IV Seminario Hispano Argentino sobre temas actuales de la hidrogeologiaGoogle Scholar
  24. Chen CX, Pei SP, Jiao JJ (2003) Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeol J 11(2):275–287Google Scholar
  25. Chen Z, Huang GH, Chakma A, Li J (2002) Application of a GIS-based modeling system for effective management of petroleum-contaminated sites. Env Eng Sci 9(5):291–303Google Scholar
  26. Christensen S, Cooley RL (1999) Evaluation of confidence intervals for a steady state leaky aquifer model. Adv Water Resour 22(8):807–817Google Scholar
  27. Clifton PM, Neuman SP (1982) Effects of kriging and inverse modeling on conditional simulation of the Avra valley aquifer in southern Arizona. Wat Resour Res 18(4):1215–1234Google Scholar
  28. Cooley RL (1977) A method of estimating parameters and assessing reliability for models of steady state groundwater flow, 1, Theory and numerical properties. Water Resour Res 13(2):318–324Google Scholar
  29. Cooley RL (1985) A comparison of several methods of solving nonlinear-regression groundwater-flow problems. Water Resour Res 21(10):1525–1538Google Scholar
  30. Cooley RL, Konikow LF, Naff RL (1986) Nonlinear regression groundwater-flow modeling of a deep regional aquifer system. Water Resour Res 22(13):1759–1778Google Scholar
  31. Dagan G (1985) Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem. Water Resour Res 21(1):65–72Google Scholar
  32. de Marsily GH, Lavedan G, Boucher M, Fasanino G (1984) Interpretation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model. In: Verly et al (ed) Proc Geostatistics for natural resources characterization. Part 2. D. Reidel Pub. Co. : pp 831–849Google Scholar
  33. de Marsily G, Delhomme JP, Delay F, Buoro A (1999) 40 years of inverse problems in hydrogeology. Comptes Rendus de l’Academie des Sciences Series IIA. Earth and Planet Sci 329(2):73–87. Elsevier ScienceGoogle Scholar
  34. Doherty J, Brebber L, Whyte P (2002) PEST-Modelling dependent parameter estimation. Water Mark Computing. Corinda (Australia)Google Scholar
  35. Doherty J (2003) Groundwater model calibration using pilot points and regularization. Ground Water 41(2):170–177Google Scholar
  36. Duan QY, Sorooshian S, Gupta V (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031Google Scholar
  37. Emselem Y, de Marsily G (1971) An automatic solution for the inverse problem. Wat Resour Res 7(5):1264–1283Google Scholar
  38. Gavalas GR, Shaw PC, Seinfeld JH, (1976) Reservoir history matching by Bayesian estimation. Soc Petrol Eng J 261:337–350Google Scholar
  39. Gogu RC, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modeling. Hydrogeol J 9(6):555–569Google Scholar
  40. Gómez-Hernández JJ, Sahuquillo A, Capilla JE (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J Hydrol 204(1–4):162–174Google Scholar
  41. Gómez-Hernández JJ, Wen XH (1998) To be or not to be multi-Gaussian? A reflection on stochastic hydrogeology. Adv Water Resour 21(1):47–61Google Scholar
  42. Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res-Atmos 104(D16):19491–19503Google Scholar
  43. Hadamard J (1902) Sur les problemes aux derivees partielles et leur signification physique. [On the problems about partial derivatives and their physical significance]. Bull Univ Princeton 13:49–52Google Scholar
  44. Hannan ES (1980) The estimation of the order of an ARMA process. Ann Stat (8):1071–1081Google Scholar
  45. Harrar WG, Sonnenborg TO, Henriksen HJ (2003) Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models. Hydrogeol J 11(5):536–548Google Scholar
  46. Hernandez AF, Neuman SP, Guadagnini A, Carrera J, (2003) Conditioning mean steady state flow on hydraulic head and conductivity through geostatistical inversion. Stochas Env Res Risk Assess 17(5):329–338Google Scholar
  47. Hill MC (1990) Relative efficiency of four parameter-estimation methods in steady-state and transient ground-water flow models. In: Gambolati, Rinaldo, Brebbia, Gray, Pinder (eds) Proc Computational Methods in Subsurface Hydrology, International Conference on Computational Methods in Water Resources, pp 103–108Google Scholar
  48. Hill MC (1992) A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression. U.S. Geological SurveyGoogle Scholar
  49. Hill MC (1998) Methods and guidelines for effective model calibration. US geological survey. Water-Resour Investigat Rep 98–4005, 91 pp, ColoradoGoogle Scholar
  50. Hill MC, Cooley RL, Pollock DW (1998) A controlled experiment in ground water flow model calibration. Ground Water 36(3):520–535Google Scholar
  51. Hoeksema RJ, Kitanidis PK (1984) Comparison of Gaussian conditional mean and kriging estimation in the geostatistical solution to the inverse problem. Water Resour Res 21(6):337–350Google Scholar
  52. Hollenbeck KJ, Jensen KH. (1998) Maximum-likelihood estimation of unsaturated hydraulic parameters. J Hydrol 210(1–4):192–205Google Scholar
  53. Hu LY (2002) Combination of Dependent Realizations within the gradual deformation method. Math Geol 34(8):953–963Google Scholar
  54. Hubbard S, Rubin Y (2000) A review of selected estimation techniques using geophysical data. J Contamin Hydrol 45(2000):3–34Google Scholar
  55. Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intel PAMI 4(2):99–104Google Scholar
  56. Kitanidis PK, Vomvoris EG (1983) A geostatistical approach to the inverse problem in groundwater modelling (steady state) and one dimensional simulations. Water Resour Res 19(3):677–690Google Scholar
  57. Kitanidis PK (1997) Introduction to geostatistics: applications to hydrogeology. Cambridge University Press, Cambridge, NYGoogle Scholar
  58. Knopman DS, Voss CI (1989) Multiobjective sampling design for parameter-estimation and model discrimination in groundwater solute transport. Water Resour Res 25(10):2245–2258Google Scholar
  59. Kool JB, Parker JC, Van Genuchten MT (1987) Parameter estimation for unsaturated flow and transport models. A Review J Hydrol 91:255–293Google Scholar
  60. Kool JB, Parker JC (1988) Analysis of the inverse problem for transient unsaturated flow. Water Resour Res 24(6):817–830Google Scholar
  61. Kowalsky MB, Finsterle S, Rubin Y (2004) Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv Water Resour 27:583–599Google Scholar
  62. Kunstmann H, Kinzelbach W, Siegfried T (2002) Conditional first-order second-moment method and its application to the quantification of uncertainty in groundwater modeling. Water Resour Res 38(4):Art. No. 1035Google Scholar
  63. Larocque M, Banton O, Ackerer P, Razack M (1999) Determining karst transmissivities with inverse modeling and an equivalent porous media. Ground Water 37(6):897–903Google Scholar
  64. Larsson A (1992) The International Projects INTRACOIN, HYDROCOIN and INTRAVAL. Adv Water Resour 15(1):85–87Google Scholar
  65. Mantoglou A (2003) Estimation of Heterogeneous Aquifer Parameters from Piezometric Head Data using Ridge Functions and Neural Networks. Stochas Environmen Risk Assess 17:339–352Google Scholar
  66. Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. J Soc Indust Appl Math 11(2)Google Scholar
  67. McLaughlin D, Townley LLR (1996) A reassessment of the groundwater inverse problem. Water Resour Res 32(5):1131–1161Google Scholar
  68. Medina A, Carrera J (1996) Coupled estimation of flow and solute transport parameters. Water Resour Res 32(10):3063–3076Google Scholar
  69. Medina A, Carrera J (2003) Geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281:251–264Google Scholar
  70. Mehl SW, Hill MC (2003) Locally refined block-centered finite-difference groundwater models. In: Kovar K, Zbynek H (eds) Evaluation of parameter sensitivity and the consequences for inverse modelling and predictions. IAHS Publication 277, p. 227–232Google Scholar
  71. Meier P, Carrera J, Sanchez-Vila X (1999) A numerical study on the relation between transmissivity and specific capacity in heterogeneous aquifers. Ground Water 37(4):611–617Google Scholar
  72. Meier P, Medina A, Carrera J (2001) Geoestatistical inversion of cross-hole pumping tests for identifyingpreferential flow channels within a shear zone. Ground Water 39(1):10–17Google Scholar
  73. Meixner T, Gupta HV, Bastidas LA, Bales RC (1999) Sensitivity analysis using mass flux and concentration. Hydrol Proc 13(14–15):2233–2244Google Scholar
  74. Nelson RW (1960) In place measurement of permeability in heterogeneous media, 1. Theory of a proposed method. J Geophys Res 65(6):1753–1760Google Scholar
  75. Nelson RW (1961) In place measurement of permeability in heterogeneous media, 2. Experimental and computational considerations. J Geophys Res 66:2469–2478Google Scholar
  76. Neuman SP (1973) Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour Res 9(4):1006–1021Google Scholar
  77. Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NU-REG/CR-6805, US Nuclear Regulatory Commision, Washington, DCGoogle Scholar
  78. Poeter EP, Hill MC (1997) Inverse models: A necessary next step in groundwater modeling. Ground Water 35(2):250–260Google Scholar
  79. Poeter EP, Hill MC (1998) Documentation of UCODE: a computer code for universal inverse modeling. U.S. Geological Survey Water-Resources Investigations Report 98–4080: 116 ppGoogle Scholar
  80. Ramarao BS, Lavenue AM, de Marsily GH, Marietta MG (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields, 1. Theory and computational experiments. Water Resour Res 31(3):475–493CrossRefGoogle Scholar
  81. Rao SVN, Thandaveswara BS, Bhallamudi SM (2003) Optimal groundwater management in deltaic regions using simulated annealing and neural networks. Water Resour Manag 17(6):409–428Google Scholar
  82. Rissanen J (1978) Modeling by shortest data description. Automatica 14:465–471CrossRefGoogle Scholar
  83. Roggero F, Hu LY (1998) Gradual deformation of continuous geostatistical models for history matching. In annual technical conference, SPE 49004Google Scholar
  84. Rubin Y (2003) Applied stochastic hydrogeology. Oxford University Press, New York 391 ppGoogle Scholar
  85. Rubin Y, Dagan G (1987) Stochastic Identification of Transmissivity and Effective Recharge in Steady Groundwater-Flow, 1 Theory. Water Resour Res 23(7):1185–1192Google Scholar
  86. Rudin M, Beckmann N, Prosas R., Reese T, Bochelen D, Sauter A. (1999) In vivo magnetic resonance methods in pharmaceutical research: current status and perspectives. NMR Biomed 12(2):69–97Google Scholar
  87. Rühli FJ, Lanz C, Ulrich-Bochsler S, Alt KW (2002) State-of-the-art imaging in palaeopathology: the value of multislice computed tomography in visualizing doubtful cranial lesions. Int J Osteoarchaeol 12(5):372–379Google Scholar
  88. Sahuquillo A, Capilla J, Gómez-Hernández JJ, Andreu J (1992) Conditional simulation of transmissivity fields honouring piezomètrica data. In: Blain WR, Cabrera E Fluid Flow Modeling, Comput. Mech., Billerica, Mass, pp 201–212Google Scholar
  89. Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3):Art. No. 1009Google Scholar
  90. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464Google Scholar
  91. Stallman RW (1956) Numerical analysis of regional water levels to define aquifer hydrology. Am Geophys Union Trans 37(4):451–460Google Scholar
  92. Tihonov AN (1963) Regularization of incorrectly posed problems, Sov. Math Dokl 4:1624–1627Google Scholar
  93. Tsai FTC, Sun NZ, Yeh WG (2003) Global-local optimization methods for the identification of threedimensional parameter structure in groundwater modeling. Water Resour Res 39(2) Art:1043CrossRefGoogle Scholar
  94. Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design of experiments for discriminating among alternative conceptual models. Adv Water Resour 15(3):199–214Google Scholar
  95. Varni M, Carrera J (1998) Simulation of groundwater age distribution. Wat Resour Res 34(12):3271–3281Google Scholar
  96. Vassolo S, Kinzelbach W, Schafer W (1998) Determination of a well head protection zone by stochastic inverse modelling. J Hydrol 206(3–4):268–280Google Scholar
  97. Vecchia AV, Cooley RL (1987) Simultaneous confidence and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour Res 23(7):1237–1250Google Scholar
  98. Vesselinov VV, Neuman SP, Illman WA (2001) Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3041CrossRefGoogle Scholar
  99. Wagner BJ, Gorelick SM (1987) Optimal groundwater quality management under parameter uncertainty. Water Resour Res 23(7):1162–1174Google Scholar
  100. Weiss R, Smith L (1998) Efficient and responsible use of prior information in inverse methods. Ground Water 36(1):151–163Google Scholar
  101. Weissmann GS, Carle SA, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil survey analysis and transition probability geostatistics. Water Resour Res 35(6):1761–1770Google Scholar
  102. Woodbury AD, Rubin Y (2000) A full-Bayesian approach to parameter inference from tracer travel time moments and investigation of scale effects at the Cape Cod experimental site. Water Resour Res 36(1):159–171Google Scholar
  103. Woodbury AD, Smith JL, Dunbar WS (1987) Simultaneous inversion of temperature and hydraulic data, 1. Theory and application using hydraulic head data. Water Resour Res 23(8):1586–1606Google Scholar
  104. Xiang Y, Sykes JF, Thomson NR (1992) A composite L1 parameter estimator for model fitting in groundwater flow and solute transport simulation. Water Resour Res 29(6):1661–1673Google Scholar
  105. Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization method for hydrological models. J Hydrol 204:83–87Google Scholar
  106. Yeh TCJ, Liu SY (2000) Hydraulic tomography: Development of a new aquifer test method. Water Resour Res 36(8):2095–2105Google Scholar
  107. Yeh WWG, Yoon YS (1981) Aquifer parameter identification with optimum dimension in parameterization. Wat Resour Res 17(3):664–672Google Scholar
  108. Yeh WWG (1986) Review of parameter estimation procedures in groundwater hydrology: The inverse problem. Water Resour Res 22:95–108Google Scholar
  109. Zimmerman DA, de Marsily G, Gotway CA, Marietta MG, Axness CL, Beauheim RL, Bras RL, Carrera J, Dagan G, Davies PB, Gallegos DP, Galli A, Gómez-Hernández JJ, Grindrod P, Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D, Neuman SP, RamaRao BS, Ravenne C, Rubin Y (1998) A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour Res 34(6):1373–1413Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Jesús Carrera
    • 1
  • Andrés Alcolea
    • 1
  • Agustín Medina
    • 1
  • Juan Hidalgo
    • 1
  • Luit J. Slooten
    • 1
  1. 1.School of Civil EngineeringTechnical University of CataloniaBarcelonaSpain

Personalised recommendations