Hydrogeology Journal

, Volume 13, Issue 1, pp 295–312 | Cite as

Applicability and methodology of determining sustainable yield in groundwater systems

  • Frans R. P. KalfEmail author
  • Donald R. Woolley


There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use.


Groundwater Conjunctive use Sustainable yield Water budget Recharge 


Il y a en ce moment un besoin de révision de la définition et de la méthodologie pour déterminer le débit spécifique.durable. Les raisons sont les suivantes : (1) la définition courante et les concepts sont ambigus et ne sont pas justifiés physiquement – ils ne peuvent donc pas être utilisés dans des applications quantitatives, (2) il y a un besoin d’éliminer les diverses interprétations et mauvaises interprétations et d’apporter une bonne base applicable (3) la notion clamant que tous les systèmes d’eau souterraine sont ou peuvent devenir durable est invalide (4) souvent il y a un nombre de facteurs excessif qui se rejoignent dans la définition, et qui ne sont pas toujours quantifiables (5) il y a souvent confusion entre le débit durable et optimal et le débit spécifique durable (6) dans de nombreux environnements arides et semi-arides, les systèmes d’eau souterraine ne peuvent être sensiblement développés selon une politique de développement durable particulière où les contraintes écologiques sont appliquées. La dérivation du débit spécifique en utilisant le principe de la conservation des masses mène à l’expression de développement durable de bassin-versant, développement « minier » (mining) partiel (non durable), et développement minier total de l’exploitation (non durable) qui peut être déterminé en utilisant des méthodes numériques de modélisation, sélectionnées en fonction de contraintes appliquées. Dans certains cas il faut reconnaître que la ressource en eau souterraine n’est pas renouvelable et que sont utilisation ne peut donc pas être durable. Dans ces cas ses destinées seraient la meilleure utilisation équitable.


Existe actualmente necesidad de revisar la definición y metodología para determinar lo que significa producción sostenible. Las razones son: (1) los conceptos y definiciones actuales son ambiguos y sin base física de modo que no pueden usarse para aplicación cuantitativa, (2) existe necesidad de eliminar interpretaciones variables y mal interpretaciones y aportar bases sanas para aplicación, (3) la noción de que todos los sistemas de aguas subterráneas son o pueden ser sostenibles no es valida, (4) frecuentemente existen un numero excesivo de factores ligados a la definición de producción sostenible los cuales no son fácil de cuantificar, (5) frecuentemente existe confusión entre la producción optima de un establecimiento y la producción sostenible de una cuenca, (6) en muchos ambientes áridos a semi-áridos los sistemas de aguas subterráneas no pueden desarrollarse sensiblemente en base a una política de producción sostenible particularmente donde se aplican restricciones ecológicas. La derivación de producción sostenible utilizando principios de conservación de masa conduce a expresiones para producciones sostenibles en cuenca, minado parcial (no sostenible) y total (no sostenible) que pueden determinarse fácilmente utilizando métodos de modelos numéricos y seleccionados en base a restricciones aplicadas. En algunos casos tiene que reconocerse que el recurso de agua subterránea no es renovable y que por lo tanto su uso no puede ser sostenible. En estos casos su destino debe de ser el uso más equitativo.



The authors thank Clifford Voss, William Alley, Marios Sophocleous and an anonymous reviewer for their comments and suggestions.


  1. Anderson M, Low R, Foot S (2002) Sustainable groundwater development in arid, high Andean basins. In: Hiscock KM et al Paper in Sustainable Groundwater Development. Geol Soc LondGoogle Scholar
  2. Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Groundwater 42(1): Jan–FebGoogle Scholar
  3. American Society of Civil Engineering (1961) Ground-water basin management. Manual of Engineering Practice no. 40, p 52Google Scholar
  4. American Society of Civil Engineering (1972) Groundwater management. Manual of Engineering Practice 40Google Scholar
  5. ARMCANZ (1997) Allocation and the use of groundwater. A national framework for improved groundwater management in AustraliaGoogle Scholar
  6. Barnett SR (2002) Sustainability issues in groundwater development. Darwin conference: balancing the groundwater budget, May 12–17, Darwin 2002Google Scholar
  7. Bouwer H (1978) Groundwater hydrology. McGraw-Hill, New YorkGoogle Scholar
  8. Bredehoeft JD, Papadopulos SS, Cooper HH Jr (1982) The water budget myth. In: Scientific basis of water resource management, studies in geophysics. National Academy Press, Washington, DC, pp 51–57 Google Scholar
  9. Bredehoeft JD (1997) Safe yield and the water budget myth. Ground Water 35(6):929Google Scholar
  10. Bredehoeft JD (2002) The water budget myth revisited: why hydrogeologists model. Ground Water 40(4):340–345PubMedGoogle Scholar
  11. Bredehoeft JD (2004) Reply to M. Sophocleous in discussion of papers section (C. Neuzil discussion editor). Groundwater 42(4) 618–619, July–AugustGoogle Scholar
  12. Brudtland GH (Chair) (1997) Our common future. Oxford University Press, OxfordGoogle Scholar
  13. Conkling H (1946) Utilization of groundwater storage in stream system development. Trans Am Soc Civ Eng 111:275–305Google Scholar
  14. Custodio E (2002) Aquifer overexploitation: what does it mean? Hydrogeol J 10(2)Google Scholar
  15. DIPNR (2002) The NSW State groundwater dependent ecosystems policy. Prepared by the (then) Department of Land and Water Conservation. NSW Government printer. ISBN 0-7347–5225-3Google Scholar
  16. Domenico P (1972) Concepts and models in groundwater hydrology. McGraw-Hill, New YorkGoogle Scholar
  17. Evans WR, Cook PG (2002) What is a sustainable yield for Australia’s groundwater systems? Intl Assoc Hydrogeologists Darwin Conference: balancing the groundwater budget, Darwin May 12–17, 2002Google Scholar
  18. Evans WR, Richardson S, Hillier J, Picken E, Dyson P, Ross J, Middlemis H (2003) Watermark: sustainable groundwater use within irrigated regions. Project 1: sustainable yield estimation. Milestone 1, Final report. Murray-Darling Basin Commission, JulyGoogle Scholar
  19. Freeze RA (1971) Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resour Res 7:347–366Google Scholar
  20. Freeze RA, Cherry JA (1979) Groundwater. Prentice-HallGoogle Scholar
  21. Hiscock KM, Rivett MO, Davison RM (eds) (2002) Sustainable groundwater development. Spec Publ No. 193. Geol Soc LondGoogle Scholar
  22. HydroGeologic (1996a) Modflow-Surfact software (version 2.2) documentation. Input instructions for the FWL4 Package. Hydrogeologic Inc, Herndon, VA 20170, USAGoogle Scholar
  23. HydroGeologic (1996b) MODHMS software (version 2.0) documentation. Volume III, Surface water flow modules. Hydrogeol Inc, Herndon, VA 20170, USAGoogle Scholar
  24. Kalf FRP, Woolley D (2004) Definition and applicability of the sustainable yield concept for management of Australia’s groundwater systems. Paper presented at the 9th Murray-Darling groundwater workshop. Bendigo 17–19, FebGoogle Scholar
  25. Kazmann RG (1956) Safe yield in ground-water development, reality or illusion? J Irr Drain Div, Am Soc Civ Eng 82(IR3):12Google Scholar
  26. Kazmann RG (1988) Modern hydrology, 3rd edn. National Water Well Association Publication, Library of Congress Cataloging-in-Publication Data, GB661.2.K39; 551.48; 88-15183Google Scholar
  27. Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41(1):2–4Google Scholar
  28. Lee CH (1915) The determination of safe yield of underground reservoirs of the closed basin type. Trans Am Soc Civil Eng 78:148–151Google Scholar
  29. Meinzer OE (1920) Quantitative methods of estimating groundwater supplies. Bull Geol Soc Am 31Google Scholar
  30. Meinzer OE (1923) Outline of groundwater hydrology, with definitions. US Geol Surv Water Supply Pap 494Google Scholar
  31. Price M (2002) Who needs sustainability? In: Hiscock KM et al (ed) Paper in sustainable groundwater development. Geol Soc LondGoogle Scholar
  32. Prudic DE (1989) Documentation of a computer program to simulate stream-aquifer relations using a modular finite-difference groundwater flow model (STR1). US Geol Surv Open-File Rep 88–729, Carson City, NevadaGoogle Scholar
  33. Sakiyan J, Yazicigil H (2004) Sustainable development and management of an aquifer system in western Turkey. Hydrogeol J 12:66–80CrossRefGoogle Scholar
  34. Sandoval R (2004) A participatory approach to integrated aquifer management: The case of Guanajuato State, Mexico. Hydrogeol J 12:6–13CrossRefGoogle Scholar
  35. Sophocleous M (1997) Managing water resources systems: why safe yield is not sustainable. Ground Water 35(4):561Google Scholar
  36. Sophocleous M (ed) (1998) Perspectives on sustainable development of water resources in Kansas. Geol Sur Bull, Kansas 239Google Scholar
  37. Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43CrossRefGoogle Scholar
  38. Stuart WT (1945) Groundwater resources of the Lansing area. Mich Dept of Cons, Geol Surv Div Rep no. 13Google Scholar
  39. Synder JH (1955) Groundwater in California—the experience of Antelope Valley, Univ. Calif. (Berkeley), Agri Expt Sta, Giannini Found. Study no. 2Google Scholar
  40. Theis CV (1940) The source of water derived from wells: essential factors controlling the response of an aquifer to development. Civil Eng 10(5):277–280Google Scholar
  41. Todd DK (1959) Groundwater hydrology. Wiley, New YorkGoogle Scholar
  42. Thomas HE (1951) The conservation of groundwater, McGraw-Hill, New YorkGoogle Scholar
  43. Thomas HE (1955) Water rights in areas of ground-water mining. US Geol Surv Circ 347Google Scholar
  44. Williams CC, Lohman SW (1949) Geology and ground-water resources of a part of south central Kansas. Geol Surv Kansas, Bull 79Google Scholar
  45. Young ME (2002) Institutional development for sustainable groundwater management—an Arabian perspective, paper. In: Hiscock KM et al Sustainable groundwater development. Geol Soc LondGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Kalf and Associates Pty LtdBilgolaAustralia
  2. 2.Consultant HydrogeologistTurramurraAustralia

Personalised recommendations