Hydrogeology Journal

, Volume 13, Issue 1, pp 69–97 | Cite as

Marine hydrogeology: recent accomplishments and future opportunities

  • A.  T. Fisher
Paper

Abstract

Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid–rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20–30 years.

Résumé

L’hydrogéologie marine est une large discipline scientifique impliquant l’ exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l’analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d’exploration océanographique, ont aidé à pousser en avant l’hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu’à présent sur la mesure ou l’estimation des propriétés à la sub-surface des fonds marins, et des travaux complémentaires ont mis en valeur les mesures de flux, local ou global, de termes « sources » et « pertes », et des liens quantitatifs entre l’hydrogéologie, la chimie, la tectonique, la biologie, et les processus géophysiques. Cet article vise à résumer des résultats sélectionnés parmi un petit nombre d’études, et à décrire plusieurs nouvelles expériences et programmes, qui sont autant d’opportunités pour répondre aux questions fondamentales relatives aux fonds marins, posées ces dernières 20-30 années.

Resumen

La hidrogeología marina es una disciplina científica de amplios alcances que involucra la exploración de interacciones fluido-roca por debajo del fondo del mar. Se han llevado a cabo estudios en centros de expansión del fondo del mar, lugares en medio de una placa, y en ambientes de placa y margen continental. Aunque muchos sitios en el fondo del mar son remotos, existen aspectos de estos sistemas marinos que los hacen particularmente adaptables para análisis hidrológico. Nuevas técnicas y herramientas desarrolladas, y el establecimiento de varios programas multidisciplinarios para exploración oceanográfica, han ayudado a impulsar la hidrogeología marina hacia delante durante las ultimas décadas. La mayor parte del trabajo hidrogeológico marino se ha enfocado en la medición o estimación de propiedades hidrogeológicas dentro del subsuelo superficial, pero trabajo adicional ha enfatizado mediciones de flujos globales y locales, términos de fuente y sumidero de fluidos, y vínculos cuantitativos entre procesos hidrogeológicos, químicos, tectónicos, biológicos y geofísicos. Además de resumir resultados seleccionados de un número pequeño de estudios de caso, este artículo incluye una descripción de varios programas y experimentos nuevos que aportarán oportunidades excepcionales para dirigir preguntas hidrogeológicas fundamentales dentro del fondo oceánico durante los siguientes 20-30 años.

Notes

Acknowledgements

Helpful suggestions were provided by reviewers S. Ge and H. Villinger and associate editor C. Voss. Funding in support of this synthesis came the U.S. National Science Foundation (OCE-0001892), the Institute for Geophysics and Planetary Physics/Los Alamos National Laboratory (Project 1317), and the U.S. Science Support Program for IODP (Award SJA-7).

References

  1. Alt JC, Teagle DAH, Brewer T, Shanks WC, Halliday A (1998) Alteration and mineralization of an oceanic forearc and the ophiolite-ocean crust analogy. J Geophys Res 103(B6):12365–12380CrossRefGoogle Scholar
  2. Bach W, Humphris SE (1999) Relationship between Sr and O isotope compositions of hydrothermal fluids and the spreading and magma supply rates at oceanic spreading centers. Geology 27(12):1067–1070CrossRefGoogle Scholar
  3. Baker ET, Chen YJ, Morgan JP (1996) The relationship between near-axes hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet Sci Lett 142:137–145CrossRefGoogle Scholar
  4. Baker ET, Levelle W, Feely RA, Massoth GJ, Walker SL (1989) Episodic venting on the Juan de Fuca Ridge. J Geophys Res 94:9237–9250Google Scholar
  5. Baker ET, Massoth GJ (1987) Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth Planet Sci Lett 85:59–73CrossRefGoogle Scholar
  6. Baker P, Stout P, Kastner M, Elderfield H (1991) Large-scale lateral advection of seawater through oceanic crust in the central equatorial Pacific. Earth Planet Sci Lett 105:522–533CrossRefGoogle Scholar
  7. Bangs NL, Shipley TH, Moore JC, Moore GF (1999) Fluid accumulation and channeling along the northern Barbados Ridge décollement thrust. J Geophys Res 104(9):20399–20414CrossRefGoogle Scholar
  8. Bartetzko A, Pezard P, Goldberg D, Sun Y-F, Becker K (2001) Volcanic stratigraphy of DSDP/ODP Hole 395A: an interpretation using well-logging data. Mar Geophys Res 22:111–127CrossRefGoogle Scholar
  9. Becker K (1986) Special report: development and use of packers in ODP. JOIDES J 12:51–57Google Scholar
  10. Becker K, Davis E (2003) New evidence for age variation and scale effects of permeabilities of young oceanic crust from borehole thermal and pressure measurements. Earth Planet Sci Lett 201(3–4):499–508Google Scholar
  11. Becker K, Davis E (2004) In situ determinations of the permeability of the igneous oceanic crust. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK, pp 189–224Google Scholar
  12. Becker K, Fisher A (2000) Permeability of upper oceanic basement on the eastern flank of the Endeavor Ridge determined with drill-string packer experiments. J Geophys Res 105(B1):897–912CrossRefGoogle Scholar
  13. Becker K, Fisher AT, Davis EE (1997) The CORK experiment in Hole 949C: long-term observations of pressure and temperature in the Barbados accretionary prism. In: Ogawa Y, Shipley T, Blum P, Bahr J (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 247–252Google Scholar
  14. Becker K, Langseth M, Anderson R, Hobart M (1985) Deep crustal geothermal measurements, Hole 504B, Costa Rica Rift, Legs 69, 70, 83, and 92. In: Anderson R, Honnorez J (eds) Initial Reports, DSDP, U.S. Govt. Printing Office, Washington, DC, pp 405–418Google Scholar
  15. Becker K, Langseth M, Von Herzen RP, Anderson R (1983) Deep crustal geothermal measurements, Hole 504B, Costa Rica Rift. J Geophys Res 88:3447–3457Google Scholar
  16. Becker K, Morin RH, Davis EE (1994) Permeabilities in the Middle Valley hydrothermal system measured with packer and flowmeter experiments. In: Davis EE, Mottl MJ, Fisher AT, Slack JF (eds) Proceedings of ODP. Science Research, Ocean Drilling Program, College Station, TX, pp 613–626Google Scholar
  17. Bekins B, Blue JE, McCaffrey AM, Dreiss SJ (1994) Modeling the origin of low chloride pore waters in a modern accretionary complex. Eos Trans Am Geophys Union 75(Suppl):588Google Scholar
  18. Bethke CM, Johnson TM (2002) Paradox of groundwater age. Geology 30(2):107–110CrossRefGoogle Scholar
  19. Biju-Duval BM, Casey J, Bergen James AM, Blackinton Grant, Claypool George E, Cowan Darrel S, Davis Dan M, Guerra Rodolfo T, Hemleben Christoph HJ, Marlow Michael S, Pudsey Carol J, Renz GW, Tardy Marc, Wilson Douglas S, Wright Audrey W, Natland James H, Hyndman Roy D, Salisbury Matthew H, Ballard Alan, Becker Keir, Denis Jerome, Hickman Stephen H, Jacobson Randy S, Langseth Marcus G, Mathews Mark A, McGowan Douglas, Nechoroshkov Vladislav L, Ponomarev Vladimir N, Svitek Joseph F, Wallerstedt Robert L, Orlofsky Susan (1984) Initial Reports Deep Sea Drilling Project, 78B. U.S. Govt. Printing Office, Washington, DCGoogle Scholar
  20. Binns RA, Barriga FJAS, Miller DJ (2002) Proceedings of ODP, Initial Reports, 193 [CD-ROM], Ocean Drilling Program, College Station, TXGoogle Scholar
  21. Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol 97:613–623Google Scholar
  22. Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech, Min Sci 17:241–251Google Scholar
  23. Bryant WR, Deflanche AP, Trabant PH (1974) Consolidation of marine clays and carbonates. In: Inderbitzen AL (eds) Deep-sea sediments, physical and mechanical properties. Plenum Press, New York, pp 209–244Google Scholar
  24. Buddemeier RW (1996) Groundwater flux to the ocean: definitions, data, applications, uncertainties. In: Buddemeier RW (ed) Groundwater discharge in coastal zone: proceedings of an international symposium. LOICZ Reports and Studies No. 8, Texel, The Netherlands, pp 16–21Google Scholar
  25. Burnett WC, Bokuniewicz H, Huettel M, Moore WS, Taniguchi M (2003) Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66(1–2): DOI:10.1023/B:BIOG.0000006066.21240.53Google Scholar
  26. Carlson RL (1998) Seismic velocities in the uppermost oceanic crust: age dependence and the fate of layer 2A. J Geophys Res 103(B4):7069–7077CrossRefGoogle Scholar
  27. Carson B, Screaton EJ (1998) Fluid flow in accretionary prisms: evidence for focused, time-variable discharge. Rev Geophys 36(3):329–351CrossRefGoogle Scholar
  28. Cary C, Delong E, Kelley D, Wilcock WSD (2004) Subseafloor biosphere at mid-ocean ridges. In: Geophys Monogr Am Geophys Union, Washington, DCGoogle Scholar
  29. Cherkauer DS, Nader DC (1989) Distribution of groundwater seepage to large surface water bodies: the effect of hydraulic heterogeneities. J Hydrol 109:151–165CrossRefGoogle Scholar
  30. Clauser C (1992) Permeability of crystalline rocks. Trans Am Geophys Union 73(233):237–238Google Scholar
  31. Cochran JR, Buck WR (2001) Near-axis subsidence rates, hydrothermal circulation, and thermal structure of mid-ocean ridge crests. J Geophys Res 106:19,233–19,258Google Scholar
  32. Converse DR, Holland HD, Edmund JM (1980) Flow rates in the axial hot springs of the East Pacific Rise (21°N): implications for the heat budget and the formation of massive sulfide deposits. Earth Planet Sci Lett 69:159–175CrossRefGoogle Scholar
  33. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123CrossRefGoogle Scholar
  34. Cutillo PA, Screaton E, Ge S (2003) Three-dimensional numerical simulation of fluid flow and heat transport within the Barbados Ridge accretionary complex. J Geophys Res 108(12): DOI: 10.1029/2002JB002240Google Scholar
  35. Davis E, Becker K (1998) Borehole observations record driving forces for hydrothermal circulation in young oceanic crust. Eos Trans Am Geophys Union 79(31):369,377–369,378Google Scholar
  36. Davis EE, Becker K (1994) Formation temperatures and pressures in a sedimented rift hydrothermal system: 10 months of CORK observations, Holes 857D and 858G. In: Davis EE, Mottl MJ, Fisher AT, Slack JF (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 649–666Google Scholar
  37. Davis EE, Becker K (2002a) Observations of natural-state fluid pressures and temperatures in young oceanic crust and inferences regarding hydrothermal circulation. Earth Planet Sci Lett 204:231–248CrossRefGoogle Scholar
  38. Davis EE, Becker K (2002b) Using subseafloor boreholes for studying sub-seafloor hydrogeology: results from the first decade of CORK observations. Geosci Can 28(4):171–178Google Scholar
  39. Davis EE, Becker K (2004) Observations of temperature and pressure: constraints on ocean crustal hydrologic state, properties, and flow. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK, pp 225–271Google Scholar
  40. Davis EE, Becker K, Pettigrew T, Carson B, MacDonald R (1992a) CORK: a hydrologic seal and downhole observatory for deep-ocean boreholes. In: Davis EE, Mottl M, Fisher AT (eds) Proceedings of ODP, Initial Reports, Ocean Drilling Program, College Station, TX, pp 43–53Google Scholar
  41. Davis EE, Chapman DS, Forster C, Villinger H (1989) Heat-flow variations correlated with buried basement topography on the Juan de Fuca Ridge flank. Nature 342:533–537Google Scholar
  42. Davis EE, Chapman DS, Wang K, Villinger H, Fisher AT, Robinson SW, Grigel J, Pribnow D, Stein J, Becker K (1999) Regional heat-flow variations across the sedimented Juan de Fuca Ridge eastern flank: constraints on lithospheric cooling and lateral hydrothermal heat transport. J Geophys Res 104(B8):17,675–17,688Google Scholar
  43. Davis EE, Elderfield H (2004) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK, 726 ppGoogle Scholar
  44. Davis EE, Fisher AT (1994) On the nature and consequences of hydrothermal circulation in the Middle Valley sedimented rift: inferences from geophysical and geochemical observations, Leg 139. In: Davis EE, Mottl MJ, Fisher AT, Slack JF (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 695–717Google Scholar
  45. Davis EE, Lister CRB, Wade US, Hyndman RD (1980) Detailed heat flow measurements over the Juan de Fuca Ridge system. J Geophys Res 85:299–310Google Scholar
  46. Davis EE, Mottl MJ, Fisher AT et al (1992b) Proceedings of the Ocean Drilling Program, Initial Reports, Ocean Drilling Program, College Station, TXGoogle Scholar
  47. Davis EE, Villinger H (1992) Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge. In: Davis EE, Mottl M, Fisher AT (eds) Proceedings of ODP, Initial Reports, Ocean Drilling Program, College Station, TX, pp 9–41Google Scholar
  48. Davis EE, Wang K, Becker K, Thompson RE (2000) Formation-scale hydraulic and mechanical properties of oceanic crust inferred from pore-pressure response to periodic seafloor loading. J Geophys Res 105(B6):13423–13435CrossRefGoogle Scholar
  49. Davis EE, Wang K, He J, Chapman DS, Villinger H, Rosenberger A (1997) An unequivocal case for high Nusselt-number hydrothermal convection in sediment-buried igneous oceanic crust. Earth Planet Sci Lett 146:137–150CrossRefGoogle Scholar
  50. Davis EE, Wang W, Thomson RE, Becker K, Cassidy JF (2001) An episode of seafloor spreading and associated plate deformation inferred from crustal fluid pressure transients. J Geophys Res 106(B10):21,953–21,963Google Scholar
  51. Detrick RS, Baggeroer AB, Delong E, Duennebier FK, Heath GR, Hyon JJ, Johnson TC, Michel DL, Oltman-Shay J, Pouliquen S, Schofield OME, Weller RA (2003) Enabling ocean research in the 21st century: implementation of a network of ocean observatories. National Academy Press, Washington, DC, 164 ppGoogle Scholar
  52. Detrick RS, Toomey DR, Collins JA (1998) Three-dimensional upper crustal heterogeneity and anisotropy around Hole 504B from seismic tomography. J Geophys Res 103(B12):30,485–30,504Google Scholar
  53. Dick HJB, Lin J, H S (2003) An ultraslow-spreading class of ocean ridge. Nature 426:(6965):405–412Google Scholar
  54. Dugan B, Flemings PB (2000) Overpressure and fluid flow in the New Jersey Continental Slope: implications for slope failure and cold seeps. Science 289:288–291CrossRefGoogle Scholar
  55. Dugan B, Flemings PB (2002) Fluid flow and stability of the US continental slope offshore New Jersey from the Pleistocene to the present. Geofluids 2:137–146CrossRefGoogle Scholar
  56. Dugan B, Flemings PB, Olgaard DL, Gooch MJ (2003) Consolidation, effective stress, and fluid pressure of sediments from ODP Site 1073, US mid-Atlantic continental slope. Earth Planet Sci Lett 215(1–2):13–26CrossRefGoogle Scholar
  57. Dunn RA, Toomey DR (2001) Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9° 30′N). Earth Planet Sci Lett 189(1–2):9–17CrossRefGoogle Scholar
  58. Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge. Earth Planet Sci Lett 172:151–165CrossRefGoogle Scholar
  59. Ferguson IJ (1993) Heat flow and thermal models of the Barbados ridge accretionary complex. J Geophys Res 98(B3):4121–4142Google Scholar
  60. Fisher AT (1998) Permeability within basaltic oceanic crust. Rev Geophys 36(2):143–182CrossRefGoogle Scholar
  61. Fisher AT (2003) Geophysical constraints on hydrothermal circulation: observations and models. In: Halbach P, Tunnicliffe V, Hein J (eds) Energy and mass transfer in submarine hydrothermal systems. Dahlem University Press, Berlin, Germany, pp 29–52Google Scholar
  62. Fisher AT (2004) Rates and patterns of fluid circulation. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK, pp 339–377Google Scholar
  63. Fisher AT, Becker K (2000) Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403:71–74Google Scholar
  64. Fisher AT, Becker K, Narasimhan TN, Langseth MG, Mottl MJ (1990) Passive, off-axis convection through the southern flank of the Costa Rica Rift. J Geophys Res 95:9343–9370Google Scholar
  65. Fisher AT, Davis EE, Hutnak M, Spiess V, Zühlsdorff L, Cherkaoui A, Christiansen L, Edwards KM, Macdonald R, Villinger H, Mottl MJ, Wheat CG, Becker K (2003a) Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421:618–621Google Scholar
  66. Fisher AT, Fischer K, Lavoie D, Langseth M, Xu J (1994) Hydrogeological and geotechnical properties of shallow sediments at Middle Valley, northern Juan de Fuca Ridge. In: Mottl MJ, Davis EE, Fisher AT, Slack JF (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 627–648Google Scholar
  67. Fisher AT, Giambalvo E, Sclater J, Kastner M, Ransom B, Weinstein Y, Lonsdale P (2001) Heat flow, sediment and pore fluid chemistry, and hydrothermal circulation on the east flank of Alarcon Ridge, Gulf of California. Earth Planet Sci Lett 188:521–534CrossRefGoogle Scholar
  68. Fisher AT, Hounslow M (1990) Transient fluid flow through the toe of the Barbados accretionary complex: evidence from ODP Leg 110 and simple analytical models. J Geophys Res 95:8845–8858Google Scholar
  69. Fisher AT, Stein CA, Harris RN, Wang K, Silver EA, Pfender M, Hutnak M, Cherkaoui A, Bodzin R, Villinger H (2003b) Abrupt thermal transition reveals hydrothermal boundary and role of seamounts within the Cocos Plate. Geophys Res Lett 30(11):1550, DOI:10.1029/2002GL016766Google Scholar
  70. Fisher AT, Zwart G (1996) The relation between permeability and effective stress along a plate-boundary fault, Barbados accretionary complex. Geology 24:307–311CrossRefGoogle Scholar
  71. Fisher AT, Zwart G (1997) Packer experiments along the décollement of the Barbados accretionary complex: measurements and in-situ permeability. In: Ogawa Y, Shipley T, Blum P, Bahr J (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 199–218Google Scholar
  72. Foucher J-P, Henry P, Harmegnies F (1997) Long-term observations of pressure and temperature in Hole 948D, Barbados accretionary prism. In: Ogawa Y, Shipley T, Blum P, Bahr J (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 239–246Google Scholar
  73. Fouquet Y, Zierenberg RA, Miller J (1998) Proceedings of the Ocean Drilling Program, Initial Reports 169. Ocean Drilling Program, College Station, TXGoogle Scholar
  74. Fryer P, Pearce JC, Stokking LB (1992) Proceedings of Ocean Drilling Program, Sci Results 125. Ocean Drilling Program, College Station, TXGoogle Scholar
  75. Fryer P, Wheat CG, Mottl MJ (1999) Mariana blueschist mud volcanism: implications for conditions within the subduction zone. Geology 27(2):103–106CrossRefGoogle Scholar
  76. FUMAGES (1997) Report to the U.S. Science Advisory Committee. In: Workshop on the Future of Marine Geology and Geophysics, NSF, Ashland Hills, ORGoogle Scholar
  77. Gable R, Morin R, Becker K (1989) Geothermal state of Hole 504B: ODP Leg 111 overview. In: Becker K, Sakai H (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 87–96Google Scholar
  78. Ge S, Bekins B, Brown KM, Davis E, Gorelick SG, Henry P, Kooi H, Moench AF, Ruppel C, Sauter M, Screaton E, Swart P, Tokunaga T, Voss C, Whitaker F (2002) Hydrogeology Program Planning Group, Final Report, Joint Oceanographic Institutions for Deep Earth Sampling, Washington, DCGoogle Scholar
  79. Gieskes JM, Vrolijk P, Blanc G (1990) Hydrogeochemistry of the northern Barbados accretionary complex transect: Ocean Drilling Program Leg 110. J Geophys Res 95:8809–8818Google Scholar
  80. Gillis K, Robinson PT (1988) Distribution of alteration zones in the upper oceanic crust. Geology 16:262–266CrossRefGoogle Scholar
  81. Golden CE, Webb SC, Sohn RA (2003) Hydrothermal microearthquake swarms beneath active vents at Middle Valley, northern Juan de Fuca Ridge. J Geophys Res 108(B1):, DOI: 10.1029/2001JB000226Google Scholar
  82. Goode DJ (1996) Direct simulation of groundwater age. Wat Resour Res 32:289–296CrossRefGoogle Scholar
  83. Grevemeyer I, Norbert K, Villinger H, Weigel W (1999) Hydrothermal activity and the evolution of the seismic properties of upper oceanic crust. J Geophys Res 104(B3):5069–5079CrossRefGoogle Scholar
  84. Guerin G, Becker K, Gable R, Pezard P (1996) Temperature measurements and heat-flow analysis in Hole 504B. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 291–296Google Scholar
  85. Halbach P, Tunnicliffe V, Hein J (2003) Energy and mass transfer in submarine hydrothermal systems. In: Dahlem Workshop Report. Dahlem University Press, Berlin, GermanyGoogle Scholar
  86. Harris RN, Fisher AT, Chapman D (2004) Fluid flow through seamounts and implications for global mass fluxes. Geology 32(8):725–728, DOI:10.1130/G20387.1Google Scholar
  87. Haymon RM (1996) The response of ridge-crest hydrothermal systems to segmented episodic magma supply. In: Walker CL (ed) Tectonic, magmatic, hydrothermal, and biological segmentation of mid-ocean ridges. Am Geophys Union, Washington, DC, pp 157–168Google Scholar
  88. Haymon RM, Fornari DJ, Edwards MH, Carbotte S, Wright D, Macdonald KC (1991) Hydrothermal vent distribution along the East Pacific Rise crest (9° 09′ 54″ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planet Sci Lett 104:513–534CrossRefGoogle Scholar
  89. Henry P (2000) Fluid flow at the toe of the Barbados accretionary wedge constrained by thermal, chemical, and hydrogeologic observations and models. J Geophys Res 105:25855–25872CrossRefGoogle Scholar
  90. Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (1988) Proceedings of ODP, Sci. Results, Initial Reports 158, Ocean Drilling Program, College Station, TXGoogle Scholar
  91. Hickey JJ (1989) An approach to the field study of hydraulic gradients in variable-salinity ground water. Ground Water 27(4):531–539Google Scholar
  92. Houtz R, Ewing J (1976) Upper crustal structure as a function of plate age. J Geophys Res 81:2490–2498Google Scholar
  93. Hubbert MK (1956) Darcy’s law and the field equivalent of the flow of underground fluids. Trans Am Inst Mining Metal Eng 207:222–239Google Scholar
  94. Humphris SE, Zierenberg RA, Mullineaux LS, Thompson RE (1995) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophys Monogr Am Geophys Union, Washington, DC, pp 466Google Scholar
  95. Hutnak M, Fisher AT, Stein CA, Harris R, Wang K, Silver E, Spinelli G, Pfender M, Villinger H, MacKnight R, Costa Pisani P, DeShon H, Diamente C (2005) The thermal state of 18–24 Ma upper lithosphere subducting below the Nicoya Peninsula, northern Costa Rica margin. In: Dixon T, Moore C, Silver E, Stein S, Furlong K, Brown K (eds) MARGINS Theoretical Institute: SIEZE Volume. Columbia University Press, New York (in press)Google Scholar
  96. Ingebritsen SE, Sanford WE (2004) Groundwater in geologic processes. Cambridge University Press, CambridgeGoogle Scholar
  97. Integrated Ocean Drilling Program (IODP) Planning Sub-Committee (IPSC)(2001) Earth, Oceans and Life, Initial Science Plan 2003–2013, Integrated Ocean Drilling Program, International Working Group, Washington, DC, pp 110Google Scholar
  98. Jannasch HW, Davis EE, Kastner M, Morris JD, Pettigrew T, Plant JN, Solomon EA, Villinger H, Wheat CG (2003) CORK-II: long-term monitoring of fluid chemistry, fluxes, and hydrology in instrumented boreholes at the Costa Rica Subduction Zone. In: Morris J, Villinger H, Klaus A (eds) Proceedings of ODP, Initial Reports, [CD-ROM], Ocean Drilling Program, College Station, TX, pp 1–36Google Scholar
  99. Jannasch HW, Johnson KS, Sakamoto CM (1994) Submersible, osmotically pumped analyzers for continuous determination of nitrate in situ. Anal Chem 66:3352–3361Google Scholar
  100. Johnson HP, Becker K, Herzen RPV (1993) Near-axis heat flow measurements on the northern Juan de Fuca Ridge: implications for fluid circulation in oceanic crust. Geophys Res Lett 20(17):1875–1878Google Scholar
  101. Johnson HP, Hutnak M, Dziak RP, Fox CG, Urcuyo I, Cowen JP, Nabelek J, Fisher C (2000a) Earthquake-induced changes in a hydrothermal system on the Juan de Fuca mid-ocean ridge. Nature 407:174–176Google Scholar
  102. Johnson HP, Pruis MJ (2003) Fluxes of fluid and heat from the oceanic crustal reservoir. Earth Planet Sci Lett 216:565–574CrossRefGoogle Scholar
  103. Johnson HP, Pruis MJ, Van Patten D, Tivey MA (2000b) Density and porosity of the upper oceanic crust from seafloor gravity measurements. Geophys Res Lett 27(7):1053–1056CrossRefGoogle Scholar
  104. Karson JA (2002) Geologic structure of the uppermost oceanic crust created at fast- to intermediate-rate spreading centers. Ann Rev Earth Planet Sci 30:347–384CrossRefGoogle Scholar
  105. Kastner M (1982) Evidence for two distinct hydrothermal systems in the Gulf of California. In: Curray J, Moore D (eds) Initial Reports, DSDP, US Govt. Printing Office, Washington, DC, pp 529–542Google Scholar
  106. Kelley DS (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Ann Rev Earth Planet Sci 30:385–391CrossRefGoogle Scholar
  107. Kelley DS, Delaney JR, Yoerger DR (2001a) Geology and venting dynamics of the Mothra hydrothermal field, Endeavour Segment, Juan de Fuca Ridge. Geology 29(10):959–962CrossRefGoogle Scholar
  108. Kelley DS, Karson JA, Blackman DK, Früh-Green G, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001b) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149Google Scholar
  109. Kohout FA, Meisler G, Meyer FW, Johnson RH, Leve GW, Wait RL (1988) Hydrogeology of the Atlantic continental margin. In: Sheridan RE, Grow JA (eds) The Atlantic continental margin. Geol Soc Am, Boulder, CO, pp 463–480Google Scholar
  110. Langseth M, Becker K (1994) Structure of igneous basement at sites 857 and 858 based on leg 139 downhole logging. In: Davis EE, Mottl MJ, Fisher AT, Slack JF (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 573–583Google Scholar
  111. Langseth MG, Herman B (1981) Heat transfer in the oceanic crust of the Brazil Basin. J Geophys Res 86:10805–10819Google Scholar
  112. Langseth MG, Mottl MJ, Hobart MA, Fisher AT (1988) The distribution of geothermal and geochemical gradients near Site 501/504, implications for hydrothermal circulation in the oceanic crust. In: Becker K, Sakai H (eds) Proceedings of ODP, Initial Reports, Ocean Drilling Program, College Station, TX, pp 23–32Google Scholar
  113. Langseth MG, Westbrook GK, Hobart MA (1990) Contrasting thermal regimes of the Barbados accretionary ridge. J Geophys Res 95:8829–8844Google Scholar
  114. Larson RL, Fisher AT, Jarrard R (1993) Highly layered and permeable Jurassic oceanic crust in the western Pacific. Earth Planet Sci Lett 119:71–83CrossRefGoogle Scholar
  115. Manning CE, Ingebritsen S (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27(12):1107–1110CrossRefGoogle Scholar
  116. Mascle AM, Casey J, Taylor Elliott, Alvarez Francis, Andreieff Patrick, Barnes Ross O, Beck Christian, Behrmann Jan, Blanc Gerard, Brown Kevin M, Clark Murlene, Dolan James F, Fisher Andrew, Gieskes Joris M, Hounslow Mark, McLellan Patrick, Moran Kate, Ogawa Yujiro, Sakai Toyosaburo, Schoonmaker Jane, Vrolijk Peter J, Wilkens Roy H, Williams Colin (1988) Proceedings of Ocean Drilling Program, Initial Reports 110, Ocean Drilling Program, College Station, TXGoogle Scholar
  117. McDonald MA, Webb SC, Hildebrand JA, Cornuelle BD (1994) Seismic structure and anisotropy of the Juan de Fuca Ridge at 45°N. J Geophys Res 99:4857–4873CrossRefGoogle Scholar
  118. Moore JC, Shipley TH, Goldberg D, Ogawa Y, Filice F, Fisher A, Jurado M-J, Moore GF, Rabute A, Yin H, Zwart G, Brückmann W (1995) Abnormal fluid pressures and fault zone dilation in the Barbados accretionary prism: evidence from logging while drilling. Geology 23:605–608CrossRefGoogle Scholar
  119. Moore JCK, Adam Bangs, Nathan L, Bekins Barbara A, Brueckmann Warner, Buecker Christian J, Erickson Stephanie N, Hansen Olav, Horton Thomas, Ireland Peter, Major Candace Olson, Moore Gregory F, Peacock Sheila, Saito Saneatsu, Screaton Elizabeth J, Shimeld John W, Stauffer Philip Henry, Taymaz Tuncay, Teas Philip A, Tokunaga Tomochika (1998) Proceedings of Ocean Drilling Program, Initial Reports 171A, Ocean Drilling Program, College Station, TXGoogle Scholar
  120. Moore WS (1996) Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380:612–614Google Scholar
  121. Moores EM, Vine FJ (1971) The Troodos massif, Cyprus, and other ophiolites as oceanic crust: evaluations and implications. Philos Trans R Soc Lond, Ser A 268:443–466Google Scholar
  122. Mottl M (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In: Halbach P, Tunnicliffe V, Hein J (eds) Energy and mass transfer in submarine hydrothermal systems. Dahlem University Press, Berlin, Germany, pp 271–286Google Scholar
  123. Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: Ocean Drilling Program Leg 195, G3, 4, DOI:10.1029/2003GC000588Google Scholar
  124. Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58:2225–2237CrossRefGoogle Scholar
  125. Mottl MJ, Wheat CG, Boulegue J (1994) Timing of ore deposition and sill intrusion at Site 856: evidence from stratigraphy, alteration, and sediment pore-water composition. In: Davis EE, Mottl MJ, Fisher AT, Slack JF (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 679–693Google Scholar
  126. Murton BJ, Redbourn LJ, German CG, Baker ET (1999) Sources and fluxes of hydrothermal heat, chemicals and biology within a segment of the Mid-Atlantic Ridge. Earth Planet Sci Lett 171:301–317CrossRefGoogle Scholar
  127. Mutter J, Karson J (1992) Structural processes at slow spreading ridges. Science 257:627–634Google Scholar
  128. Neuman SP, Di Federico V (2003) Multifaceded nature of hydrogeologic scaling and its interpretation. Rev Geophys 41:(3), DOI:10.1029/2003RG000130Google Scholar
  129. Neuzil CE (1995) Abnormal pressures as hydrodynamic phenomena. Am J Sci 295:742–786Google Scholar
  130. Noel M, Hounslow MW (1988) Heat flow evidence for hydrothermal convection in Cretaceous crust of the Madiera Abyssal Plain. Earth Planet Sci Lett 90:77–86CrossRefGoogle Scholar
  131. Oberlander PL (1989) Fluid density and gravitational variations in deep boreholes and their effect on fluid potential. Ground Water 27(3):341–350Google Scholar
  132. Paillet FL, Hess AE, Cheng CH, Hardin E (1986) Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping. Ground Water 25:28–40Google Scholar
  133. Park J-O, Tsuru T, Kodaira S (2002) Splay fault branching along the Nankai subduction zone. Science 297:1157–1160CrossRefGoogle Scholar
  134. Parnell J (2002) Fluid seeps at continental margins: towards an integrated plumbing system. Geofluids 2:57–61CrossRefGoogle Scholar
  135. Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–829Google Scholar
  136. Person M, Dugan B, Swenson JB, Urbano L, Stott C, Taylor J, Millet M (2003) Pleistocene hydrogeology of the Atlantic continental shelf. New England, Geol Soc Am Bull 115(11):1324–1343Google Scholar
  137. Phillips SW, Lindsey BD (2003) The influence of ground water on nitrogen delivery to the Chesapeake Bay, http://md.water.usgs.gov/publications/fs-091-03, U.S. Geological Survey, Reston, VAGoogle Scholar
  138. Renshaw CE (1998) Sample bias and the scaling of hydraulic conductivity in fractured rock. Geophys Res Lett 25:121–124CrossRefGoogle Scholar
  139. Rovey CWI, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33(5):769–780Google Scholar
  140. Ryan WBF, Detrick RS, Becker K, Bellingham J, Lukas R, Lupton J, Mullineaux L, Sipress J (2000) Illuminating the hidden planet: the future of seafloor observatory science. National Academy Press, Washington, DC, 135 ppGoogle Scholar
  141. Sanford WE (1997) Correcting for diffusion in Carbon-14 dating of ground water. Ground Water 35(2):357–361Google Scholar
  142. Schultz A, Delaney JR, McDuff RE (1992) On the partitioning of heat flux between diffuse and point source seafloor venting. J Geophys Res 97:12299–12315Google Scholar
  143. Schulze-Makuch D, Cherkauer DS (1997) Method developed for extrapolating scale behavior. Trans Am Geophys Union 78:3Google Scholar
  144. Screaton E, Carson B, Davis E, Becker K (2000) Permeability of a décollement zone: Results from a two-well experiment in the Barbados accretionary complex. J Geophys Res 105(B9):21403–21410CrossRefGoogle Scholar
  145. Screaton E, Fisher A, Carson B, Becker K (1997) Barbados ridge hydrogeologic tests: implications for fluid migration along an active décollement. Geology 25:239–242CrossRefGoogle Scholar
  146. Screaton E, Ge S (1997) An assessment of along-strike fluid transport within the Barbados Ridge accretionary complex: results of preliminary modeling. J Geophys Res 24(23):3085–3088Google Scholar
  147. Screaton EJ, Wuthrich DR, Dreiss SJ (1990) Permeabilities, fluid pressures, and flow rates in the Barbados Ridge complex. J Geophys Res 95:8997–9007Google Scholar
  148. Shipley TH, Moore GF, Bangs NL, Moore JC, Stoffa PL (1994) Seismically inferred dilatancy distribution, northern Barbados Ridge decollement: implications for fluid migration and fault strength. Geology 22:411–414CrossRefGoogle Scholar
  149. Shipley THO, Yujiro Blum Peter; Ashi Juichiro, Brueckmann Warner, Filice Frank, Fisher Andrew, Goldberg David, Henry Pierre, Housen Bernard, Jurado Maria-Jose, Kastner Miriam, Labaume Pierre, Laier Troels, Leitch Evan C, Maltman Alex J, Meyer Audrey, Moore Gregory F, Moore J Casey, Peacock Sheila, Rabaute Alain, Steiger Torsten H, Tobin Harold J, Underwood Michael B, Xu Yan, Yin Hezhu, Zheng Yan, Zwart Gretchen (1995) Proceedings of Ocean Drilling Program, Initial Reports 56, Ocean Drilling Program, College Station, TXGoogle Scholar
  150. Sinha MC, Constable SC, Peirce C, White A, Heinson G, MacGregor LM, Navin DA (1998) Magmatic processes at slow spreading ridges: implications of the RAMESSES experiment at 57° 45′ N on the Mid-Atlantic Ridge. Geophys J Int 135:731–745CrossRefGoogle Scholar
  151. Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962CrossRefGoogle Scholar
  152. Sohn RA, Webb SC, Hildebrand JA, Cornuelle BC (1997) Three-dimensional tomographic velocity structure of upper crust, CoAxial segment, Juan de Fuca Ridge: implications for on-axis evolution and hydrothermal circulation. J Geophys Res 102:17,679–17,695Google Scholar
  153. Spinelli G, Fisher AT, Wheat CG, Tryon MD, Brown KM, Flegal AR (2002) Groundwater seepage into northern San Francisco Bay: implications for dissolved metals budgets. Water Resour Res 38(7):DOI:10.1029/2001WR000827Google Scholar
  154. Spinelli GA, Fisher AT (2004) Hydrothermal circulation within rough basement on the Juan de Fuca Ridge flank. Geochem. Geophys Geosyst 5(2):Q02001, DOI:10.1029/2003GC000616CrossRefGoogle Scholar
  155. Spinelli GA, Giambalvo EG, Fisher AT (2004) Hydrologic properties and distribution of sediments. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK, pp 151–188Google Scholar
  156. Stauffer PH, Bekins B (2001) Modeling consolidation and dewatering near the toe of the northern Barbados accretionary complex. J Geophys Res 106:6369–6383CrossRefGoogle Scholar
  157. Stein CA, Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–137Google Scholar
  158. Stein CA, Stein S, Pelayo AM (1995) Heat flow and hydrothermal circulation. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thompson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological and geological interactions. Am Geophys Union, Washington, DC, pp 425–445Google Scholar
  159. Stein JS, Fisher AT (2001) Multiple scales of hydrothermal circulation in Middle Valley, northern Juan de Fuca Ridge: physical constraints and geologic models. J Geophys Res 106(B5):8563–8580CrossRefGoogle Scholar
  160. Stein JS, Fisher AT (2003) Observations and models of lateral hydrothermal circulation on a young ridge flank: reconciling thermal, numerical and chemical constraints. Geochem Geophys Geosyst DOI:10.1029/2002GC000415Google Scholar
  161. Stephen R (1981) Seismic anisotropy observed upper oceanic crust. Geophys Res Lett 8:865–868Google Scholar
  162. Stephen RA (1985) Seismic anisotropy in the upper oceanic crust. J Geophys Res 90:11383–11396Google Scholar
  163. Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuleger E (1999) Gas hydrate destabilization; enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170(1–2):1–15CrossRefGoogle Scholar
  164. Taniguchi M, Burnett WC, Smith CF, Paulsen RJ, O’Rourke D, Krupa SL, Christoff JL (2003) Spatial and temporal distributions of submarine groundwater discharge rates obtained from various types of seepage meters at a site in the Northeastern Gulf of Mexico. Biogeochemistry 66(1–2): DOI:10.1023/B:BIOG.0000006090.25949.8dGoogle Scholar
  165. Taylor E, Leonard J (1990) Sediment consolidation and permeability at the Barbados forearc. In: Moore JC, Mascle A, Auroux C (eds) Proceedings of ODP, Science Research, Ocean Drilling Program, College Station, TX, pp 129–140Google Scholar
  166. Theim H (1906) Hydrologische methoden. Gebhardt, Leipzig, 56 ppGoogle Scholar
  167. Toomey DR, Soloman SC, Purdy GM (1988) Microearthquakes beneath the median valley of the Mid-Atlantic Ridge near 23°N: Tomography and tectonics. J Geophys Res 93:9093–9112Google Scholar
  168. Tryon MD, Brown KM, Dorman L, Sauter A (2001) A new benthic aqueous flux meter for very low to moderate discharge rates. DSR 48(9):2121–2146CrossRefGoogle Scholar
  169. Vacquier V, Sclater JG, Corry CE (1967) Studies in the thermal state of the earth, the 21st paper: heat-flow, Eastern Pacific. Bull Earthquake Res Instit 45:375–393Google Scholar
  170. Villinger H, Grevemeyer I, Kaul N, Hauschild J, Pfender M (2002) Hydrothermal heat flux through aged oceanic crust: where does the heat escape? Earth Planet Sci Lett 202(1):159–170CrossRefGoogle Scholar
  171. Von Herzen RP (2005) Geothermal evidence for continuing hydrothermal circulation in older (>60 Ma) ocean crust. In: Davis EE, Elderfield H (eds) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge, UK (in press)Google Scholar
  172. Wang K, Davis EE (1996) Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations. J Geophys Res 101:11,483–11,495Google Scholar
  173. Wang K, He J, Davis EE (1997) Influence of basement topography on hydrothermal circulation in sediment-buried oceanic crust. Earth Planet Sci Lett 146:151–164CrossRefGoogle Scholar
  174. Wheat CG (1990) Fluid circulation and diagenesis in an off-axis hydrothermal system: the Mariana Mounds. PhD Thesis, University of WashingtonGoogle Scholar
  175. Wheat CG, Jannasch HW, Kastner M, Plant JN, DeCarlo E (2005a) Seawater transport and reaction in upper oceanic basaltic basement: chemical data from continuous monitoring of sealed boreholes in a ridge flank environment, G3 (in press)Google Scholar
  176. Wheat CG, Jannasch HW, Plant JN, Moyer CL, Sansone FJ, McMurtry GM (2000) Continuous sampling of hydrothermal fluids from Loihi Seamount after the 1996 event. J Geophys Res 105(8):19353–19367CrossRefGoogle Scholar
  177. Wheat CG, Mottl MJ, Fisher AT, Kadko D, Davis EE, Baker E (2004b) Heat and fluid flow through a basaltic outcrop on a ridge flank, G3, in reviewGoogle Scholar
  178. Wilcock WSD, Archer SD, Purdy GM (2002) Microearthquakes on the Endeavour segment of the Juan de Fuca Ridge. J Geophys Res 107:DOI:10.1029/2001JB000505Google Scholar
  179. Wilcock WSD, Fisher AT (2005) Geophysical constraints on the sub-seafloor environment near mid-ocean ridges. In: Cary C, Delong E, Kelley D, Wilcock WSD (eds) Subseafloor biosphere at mid-ocean ridges. Am Geophys Union, Washington, DC (in press)Google Scholar
  180. Wilkens RH, Fryer GJ, Karsten J (1991) Evolution of porosity and seismic structure of upper oceanic crust: importance of aspect ratios. J Geophys Res 96:17,981–17,995Google Scholar
  181. Williams DL, Von Herzen RP (1974) Heat loss from the earth: new estimate. Geology 2:327–328CrossRefGoogle Scholar
  182. Williams DL, Von Herzen RP, Sclater JG, Anderson RN (1974) The Galapagos Spreading Centre, lithospheric cooling and hydrothermal circulation. Geophys J R Astr Soc 38:587–608Google Scholar
  183. Zoback MD, Anderson RN (1983) Permeability, underpressures, and convection in the oceanic crust at Deep Sea Drilling Project Hole 504B. In: CJ, Langseth MG (eds) Initial Reports, DSDP, U.S. Govt. Printing Office, Washington, DC, pp 245–254Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • A.  T. Fisher
    • 1
  1. 1.Earth Sciences Department and Institute for Geophysics and Planetary PhysicsUniversity of CaliforniaSanta CruzUSA

Personalised recommendations