Hydrogeology Journal

, Volume 13, Issue 1, pp 124–147 | Cite as

Trends, prospects and challenges in quantifying flow and transport through fractured rocks

Paper

Abstract

Among the current problems that hydrogeologists face, perhaps there is none as challenging as the characterization of fractured rock (Faybishenko and Benson 2000). This paper discusses issues associated with the quantification of flow and transport through fractured rocks on scales not exceeding those typically associated with single- and multi-well pressure (or flow) and tracer tests. As much of the corresponding literature has focused on fractured crystalline rocks and hard sedimentary rocks such as sandstones, limestones (karst is excluded) and chalk, so by default does this paper. Direct quantification of flow and transport in such rocks is commonly done on the basis of fracture geometric data coupled with pressure (or flow) and tracer tests, which therefore form the main focus. Geological, geophysical and geochemical (including isotope) data are critical for the qualitative conceptualization of flow and transport in fractured rocks, and are being gradually incorporated in quantitative flow and transport models, in ways that this paper unfortunately cannot describe but in passing. The hydrogeology of fractured aquifers and other earth science aspects of fractured rock hydrology merit separate treatments. All evidence suggests that rarely can one model flow and transport in a fractured rock consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Instead, one must generally account for the highly erratic heterogeneity, directional dependence, dual or multicomponent nature and multiscale behavior of fractured rocks. One way is to depict the rock as a network of discrete fractures (with permeable or impermeable matrix blocks) and another as a nonuniform (single, dual or multiple) continuum. A third way is to combine these into a hybrid model of a nonuniform continuum containing a relatively small number of discrete dominant features. In either case the description can be deterministic or stochastic. The paper contains a brief assessment of these trends in light of recent experimental and theoretical findings, ending with a short list of prospects and challenges for the future.

Keywords

Fractured rocks Discrete models Continuum models Flow Transport 

Résumé

Parmis les problèmes aucquels font face les hydrogéologues, il y a celui de la caractérisation des roches fracturées (Faybishenko and Benson, 2000). Cet article discute des solutions associées aux quantifications des écoulements et des transports à travers les roches fracturées à l’échelles des essais de puits et des essais de traçage. Une part importante de la litérature traite des roches cristallines, des roches sédimentaires consolidées telles les grés, les calcaires (exeptés les karsts) et la craie. De fait, cet article traitera la même panoplie de roches. La quantification directe des écoulements et du transport dans de tels milieux est généralement abordée via la géométrie des fractures, les données de pression et de traçage, qui déslors sont les objets principaux de notre étude. La géologie, la géophysique et la géochimie (incluant la géochimie isotopique) sont criticables car elles donnent des informations qualitatives sur l’écoulement et le transport des aquifères fracturés, et son intégrées graduellement dans des modèles qualitatifs. La manière d’intégrer ces données dépasse malheureusement cet article. L’hydrogéologie des aquifères de fractures et les autres sciences de la terre s’intéressant aux roches fracturées méritent des traîtements différents. En toute évidence il est suggéré que rarement un modèle d’écoulement et de transport dans une roche fracturée puisse être traité comme un milieu isotropique continu, uniforme ou moyennement non-uniforme. Par ailleurs, il est admis la dépendance entre la forte hétérogénéité erratique et la variété de natures et de comportements des roches fracturées. Une manière de régler le problème est de considérer le milieu comme un réseau de fractures discrètes (avec une perméabilité de matrice ou de bloc). Une autre est de l’envisager comme un milieu non-uniforme (simple, double ou multiple) continu. Une troisième manière est de combiner ceci dans un modèle hybride d’un milieu non-uniforme, contenant un relativement petit nombre de fractures dominantes et discrètes. Dans d’auters cas la description peut être déterministe ou stochastique. L’article contient un brève apperçu de ces tendances à la lumière d’expériences récentes et de nouvelles théories, et se termine par une courte liste de «challenge» et de priorités pour le futur.

Resumen

Entre los problemas actuales que enfrentan los hidrogeólogos, quizá no hay uno tan desafiante como la caracterización de roca fracturada (Faybishenko y Benson, 2000). Este artículo discute problemas asociados con la cuantificación de flujo y transporte a través de rocas fracturadas en escalas que no exceden las típicas asociadas con presión (o flujo) en un solo pozo o varios pozos y pruebas con trazadores. Debido a que mucha de la literatura del tema se ha enfocado en rocas cristalinas fracturadas y rocas sedimentarias duras tal como areniscas, calizas (excluyendo karst) y creta, también en contumacia lo hace este artículo. La cuantificación directa del flujo y transporte en tales rocas se hace comúnmente en base a datos geométricos de fracturas acoplados con pruebas de presión (o flujo) y trazadores, los cuales por lo tanto constituyen nuestra principal orientación. Datos geológicos, geofísicos y geoquímicos (incluyendo isótopos) son críticos para la conceptualización cuantitativa de flujo y transporte en rocas fracturadas, y se han estado incorporando gradualmente en modelos cuantitativos de flujo y transporte, en formas que desafortunadamente este artículo solo puede describir de paso. La hidrogeología de rocas fracturadas y otros aspectos de ciencia de la tierra de hidrología de rocas fracturadas amerita tratamientos separados. Toda la evidencia sugiere que uno raramente puede modelizar flujo y transporte en una roca consistentemente fracturada si la considera como una unidad continua isotrópica uniforme o poco uniforme. En vez de adoptar este enfoque, uno tiene generalmente que explicar la heterogeneidad altamente errática, dependencia direccional, naturaleza doble o multicomponente y comportamiento multiescalar de las rocas fracturadas. Una manera de lograr esto consiste en considerar que la roca contiene una red de fracturas discretas (con bloques de matriz permeable o impermeable) y otro modo en considerar la roca como una unidad continua no uniforme (sola, doble o múltiple). Un tercer procedimiento consiste en combinar las dos maneras anteriores en un modelo híbrido el cual consiste de un continuo no uniforme conteniendo un número relativamente pequeño de fracturas principalmente discretas. En ambos casos la descripción puede ser determinística o estocástica. El artículo contiene una evaluación breve de estas tendencias en base a descubrimientos recientes teóricos y experimentales, terminando con una lista corta de prospectos y desafíos para el futuro.

References

  1. Abelin H, Birgersson L (1987) 3-D migration experiment—report 1, Site preparation and documentation. Stripa Project TR 87–19. SKB, Stockholm, SwedenGoogle Scholar
  2. Abelin H, Birgersson L, Gidlund J (1987a) 3-D migration experiment—report 2, Instrumentation and tracers. Stripa Project TR 87–20. SKB, Stockholm, SwedenGoogle Scholar
  3. Abelin H, Birgersson L, Gidlund J, Moreno L, Neretnieks I, Widen H, Agren T (1987b) 3-D migration experiment—report 3, Part 1, Performed experiments, results and evaluation. Stripa Project TR 87–21. SKB, Stockholm, SwedenGoogle Scholar
  4. Abelin H, Birgersson L, Widen H, Agren T, Neretnieks I (1994), Channeling experiments in crystalline fractured rocks. J Contam Hydrol 15(3):129–158CrossRefGoogle Scholar
  5. Adler PM, Thovert J-F (1999) Fractures and fracture networks, theories and applications of transport in porous media, vol. 15. Kluwer Academic Publishers, 429 ppGoogle Scholar
  6. Ahlbom K, Albino B, Carlsson L, Danielsson J, Nilsson G, Olsson O, Sehlstedt S, Stejskal V, Stenberg L (1983c) Evaluation of the geological, geophysical and hydrogeological conditions at Kamlunge. SKBF/KBS TR 83–54. SKBF/KBS, Stockholm, SwedenGoogle Scholar
  7. Ahlbom K, Albino B, Carlsson L, Nilsson G, Olsson O, Stenberg L, Timje H (1983b) Evaluation of the geological, geophysical and hydrogeological conditions at Gidea. SKBF/KBS TR 83–53. SKBF/KBS, Stockholm, SwedenGoogle Scholar
  8. Ahlbom K, Carlsson L, Carlsten L-E, Duran O, Larsson N-A, Olsson O (1983a) Evaluation of the geological, geophysical and hydrogeological conditions at Fjallveden. SKBF/KBS TR 83–52. SKBF/KBS, Stockholm, SwedenGoogle Scholar
  9. Ahlbom K, Carlsson L, Gentzschein B, Jamtlid A, Olsson O, Tiren S (1983d) Evaluation of the geological, geophysical and hydrogeological conditions at Svartboberget. SKBF/KBS TR 83–55. SKBF/KBS, Stockholm, SwedenGoogle Scholar
  10. Altman SJ, Meigs LC, Jones TL, McKenna SA (2002) Controls of mass recovery rates in single-well injection-withdrawal tracer tests with a single-porosity, heterogeneous conceptualization. Water Resour Res 38(7)10.1029/2000WR000182Google Scholar
  11. Amadei B, Illangasekare T (1994) A mathematical model for flow and solute transport in non-homogeneous rock fractures. Int J Rock Mech Mineral Sci Geomech Abstr 31:719–731CrossRefGoogle Scholar
  12. Ando K, Kostner A, Neuman SP (2003) Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augères, France, revisited, Hydrogeol J 11(5):521–535Google Scholar
  13. Auradou H, Måløy KJ, Schmittbuhl J, Hansen A (2003) Drainage in a rough gouge-filled fracture, Transport Porous Media, 50:267–305Google Scholar
  14. Barenblatt GI, Zheltov YP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks: J Appl Math Mech (English translation) 24:1286–1303Google Scholar
  15. Barker JA (1988) A generalized radial flow model for hydraulic tests in fractured rock. Water Resour Res 24(10):1796–1804Google Scholar
  16. Basha HA, El-Asmar W (2003) The fracture flow equation and its perturbation solution. Water Resour Res 39(12):1365,  DOI:10.1029/2003WR002472Google Scholar
  17. Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York, 764 ppGoogle Scholar
  18. Becker MW, Shapiro AM (2003) Interpreting tracer breakthrough tailing from different forced-gradient tracer experiment configurations in fractured bedrock. Water Resour Res 39(1):1024,  DOI:10:1029/2001WR001190Google Scholar
  19. Beckie R, Harvey CF (2002) What does a slug test measure: an investigation of instrument response and the effects of heterogeneity. Water Resour Res 38(12), 1290,  DOI:10.1029/2001WR001072
  20. Benke R, Painter S (2003) Modeling conservative tracer transport in fracture networks with a hybrid approach based on the Boltzmann transport equation. Water Resour Res 39(11), 1324,  DOI:10.1029/2003WR001966
  21. Berkowitz B, Bear J, Braester C (1988) Continuum models for contaminant transport in fractured porous formations. Water Resour Res 24(8):1225–1236Google Scholar
  22. Berkowitz B, Scher H (1996) Influence of embedded fractures on contaminant diffusion in geological formations. Geophys Res Lett 23(9):925–928CrossRefGoogle Scholar
  23. Bibby R (1981) Mass transport of solutes in dual-porosity media. Water Resour Res 17(4):1075–1081Google Scholar
  24. Birkhölzer J, Rubin H, Daniels H, Rouvé G (1993) Contaminant advection and spreading in a fractured permeable formation, 2, Numerical simulation. J Hydrol 144:35–38CrossRefGoogle Scholar
  25. Birkhölzer J, Tsang CF (1997) Solute channeling in unsaturated heterogeneous porous media. Water Resour Res 33(10):2221–2238CrossRefGoogle Scholar
  26. Bodin J, Delay F, de Marsily G (2003a) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol J 11:418–433,  DOI:10.1007/s10040-003-0268-2Google Scholar
  27. Bodin J, Delay F, de Marsily G (2003b) Solute transport in a single fracture with negligible matrix permeability: 2. mathematical formalism. Hydrogeology J 11:434–454,  DOI:10.1007/s10040-003-029-1Google Scholar
  28. Bodvarsson GS, Wu Y-S, Zhang K (2003) Development of discrete flow paths in unsaturated fractures at Yucca Mountain. J Contam Hydrol 62–63:23–42Google Scholar
  29. Boehmer WK, Boonstra J (1987) Flow to wells in intrusive dikes, PhD Dissertation, Vrije Universiteit Amsterdam, The NetherlandsGoogle Scholar
  30. Bogdanov II, Mourzenko VV, Thovert J-F, Adler PM (2003a) Pressure drawdown well tests in fractured porous media. Water Resour Res 39(1), 1021,  DOI:10.1029/2000WR000080
  31. Bogdanov II, Mourzenko VV, Thovert J-F, Adler PM (2003b) Effective permeability of fractured porous media in steady state flow. Water Resour Res 39(1), 1023,  DOI:10.1029/2001WR000756
  32. Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geologic media. Rev Geophys 39(3):347–383CrossRefGoogle Scholar
  33. Bossart P, Mazurek M (1991) Grimsel Test Site—structural geology and water flow-paths in the migration shear-zone. Nagra Tech Rep NTB 91–12, Nagra, Wettingten, SwitzerlandGoogle Scholar
  34. Braester C, Thunvik R (1984) Determination of formation permeability by double-packer tests. J Hydrol 72:375–389CrossRefGoogle Scholar
  35. Brauchler R (2004) Characterization of fractured porous media using multivariate statistics and hydraulic travel time tomography. PhD Dissertation, University of Tübingen, GermanyGoogle Scholar
  36. Brauchler R, Liedl R, Dietrich P (2003) A travel time based hydraulic tomographic approach. Water Resour Res 39(12), 1370,  DOI:10.1029/2003WR002262
  37. Brown SR (1995) Measuring the dimension of self-affine fractals: example of rough surfaces. In: Barton CC, La Pointe PR (eds) Fractals in the earth sciences. Plenum Press, New York, pp 77–87Google Scholar
  38. Brown SR, Caprihan A, Hardy R (1998) Experimental observation of fluid flow channels in a single fracture. J Geophys Res 103(B3):5125–5132CrossRefGoogle Scholar
  39. Brown SR, Kranz RL, Bonner BP (1986) Correlation between the surfaces of natural rock joints. Geophys Res Lett 13(13):1430–1433Google Scholar
  40. Brown SR, Scholz CH (1985) Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res -Solid 90(B14):2575–2582Google Scholar
  41. Brush DJ, Thomson NR (2003) Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and local cubic law simulations, Water Resour Res 39(4), 1085,  DOI:10.1029/2002WR001346
  42. Butler Jr JJ, Healey JM (1998a) Relationship between pumping-test and slug-test parameters: scale effect or artifact? Ground Water 36:305–313Google Scholar
  43. Butler Jr JJ, Healey JM (1998b) Discussion of papers: authors’ reply. Ground Water 36:867–868Google Scholar
  44. Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990a) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation, 1, the flow model. Water Resour Res 26(3):479–489Google Scholar
  45. Cacas MC, Ledoux E, de Marsily G, Barbreau A, Calmels P, Gaillard B, Margritta R (1990b) Modelling fracture flow with a stochastic discrete fracture network: calibration and validation, 2, the transport model. Water Resour Res 26(3):491–500Google Scholar
  46. Cady CC, Silliman SE, Shaffern E (1993) Variation in aperture estimate ratios from hydraulic and tracer tests in a single fracture. Water Resour Res 29(9):2975–2982Google Scholar
  47. Carlsson L, Gidlund G (1983) Evaluation of the hydrogeological conditions at Finnsjön. SKBF/KBS TR 83–56. SKBF/KBS, Stockholm, SwedenGoogle Scholar
  48. Carrera J, Heredia J, Vomvoris S, Hufschmied P (1990) Modeling of flow in a small fractured monzonitic gneiss block. In: Neuman SP, Neretnieks I (eds) Hydrogeology of low permeability environments, hydrogeology, selected papers, 2, Verlag Heinz Heise, Hannover, Germany, pp 115–167Google Scholar
  49. Carrera J, Martinez-Landa L (2000) Mixed discrete-continuum models: a summary of experiences in test interpretation and model predictions. In: Faybishenko B et al. (eds) Dynamics of fluids in fractured rocks. Geophys Monogr 122, AGU, Washington, DC, pp 251–265Google Scholar
  50. Carrera J, Sànchez-Vila X, Benet I, Medina A, Galarza G, Guimerà J (1998) On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol J 6(1):178–190CrossRefGoogle Scholar
  51. Chekuri VS, Tyler SW, Fordham JW (1995) The role of fracture coatings on water imbibition into unsaturated tuff from Yucca Mountain, Rep NWPO-TR-024–95, Nucl Waste Proj Off Nev Agency for Nucl Proj, Carson CityGoogle Scholar
  52. Chen G, Illman WA, Thompson DL, Vesselinov VV, Neuman SP (2000) Geostatistical, type curve and inverse analyses of pneumatic injection tests in unsaturated fractured tuffs at the Apache Leap Research Site near Superior, Arizona. In: Faybishenko B et al. (eds) Dynamics of fluids in fractured rocks. Geophys Monogr 122, AGU, Washington, DC, pp 73–98Google Scholar
  53. Chen G, Taniguchi M, Neuman SP (1995) An overview of instability and fingering during immiscible fluid flow in porous and fractured media. Rep NUREG/CR-6308, prepared for US Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  54. Cheng H, Cvetkovic V (2003) Hydrodynamic control of tracer retention in heterogeneous rock fractures. Water Resour Res 39(5):1130,  DOI:10.1029/2002WR001354Google Scholar
  55. Cox D, Wang JS (1993) Annual Rep 1992, Earth Sci Div Lawrence Berkeley National Lab, LBL-33000, pp 99–102Google Scholar
  56. Cvetkovic V, Painter S, Outters N, Selroos JO (2004) Stochastic simulation of radionuclide migration in discretely fractured rock near the Äspö Hard Rock Laboratory. Water Resour Res 40, W02404,  DOI:10.1029/2003WR002655
  57. Dagan G, Neuman SP (eds) (1997) Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge, UK, 241 ppGoogle Scholar
  58. Dahan O, Nativ R, Adar EM, Berkowitz B, Ronen Z (1999) Field observations of flow in a fracture intersecting unsaturated chalk. Water Resour Res 35(11):3315–3326CrossRefGoogle Scholar
  59. Dahan O, Nativ R, Adar EM, Berkowitz B, Weisbrod N (2000) On fracture structure and preferential flow in unsaturated chalk. Ground Water 38(3):444–451Google Scholar
  60. Darcel C, Bour O, Davy P, De Dreuzy J-R (2003) Connectivity properties of two-dimensional fracture networks with stochastic fractal correlation. Water Resour Res 39(10), 1272,  DOI:10.1029/2002WR001628
  61. Day-Lewis FD, Lane Jr. JW, Harris JM, Gorelick SM (2003) Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water Resour Res 39(10), 1290,  DOI:10.1029/2002WR001722
  62. De Dreuzy J-R, Darcel C, Davy P, Bour O (2004) Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution. Water Resour Res 40, W01502,  DOI:10.1029/2003WR002260
  63. De Dreuzy J-R, Davy P, Bour O (2001a) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resour Res 37(8):2065–2078CrossRefGoogle Scholar
  64. De Dreuzy J-R, Davy P, Bour O (2001b) Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures. Water Resour Res 37(8):2079–2095CrossRefGoogle Scholar
  65. De Dreuzy J-R, Davy P, Bour O (2002) Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour Res 38(12), 1276,  DOI:10.1029/2001WR001009
  66. Dershowitz W, Wallman P, Kinrod S (1991) Discrete fracture modelling for the Stripa site characterization and validation drift inflow predictions. Stripa Project Tech Rep 91–16. SKB Swedish Nuclear Fuel and Waste Management Co., Sweden, StockholmGoogle Scholar
  67. Dershowitz WS, Fidelibus C (1999) Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method. Water Resour Res 35(9):2685–2691CrossRefGoogle Scholar
  68. Deutsch CV, Journel AG (1998) GSLIB geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  69. Di Federico V (2001) On non-Newtonian fluid flow in rough fractures. Water Resour Res 37(9):2425–2430CrossRefGoogle Scholar
  70. Di Federico V, Neuman SP (1997) Scaling of random fields by means of truncated power variograms and associated spectra. Water Resour Res 33(5):1075–1085CrossRefGoogle Scholar
  71. Di Federico V, Neuman SP (1998) Transport in multiscale log conductivity fields with truncated power variograms. Water Resour Res 34(5):963–973CrossRefGoogle Scholar
  72. Di Federico V, Neuman SP, Tartakovsky DM (1999) Anistropy, lacunarity, upscaled conductivity and its covariance in multiscale fields with truncated power variograms. Water Resour Res 35(10):2891–2908CrossRefGoogle Scholar
  73. Dragila MI, Weisbrod N (2004) Fluid motion through an unsaturated fracture junction. Water Resour Res 40, W02403,  DOI:10.1029/2003WR002588
  74. Dragila MI, Wheatcraft SW (2001) Free surface films. In: Conceptual models of flow and transport in the fractured vadose zone. Natl Acad Press Washington, DC, pp 217–241Google Scholar
  75. Duguid JO, Lee PCY (1977) Flow in fractured porous media. Water Resour Res 13:558–566Google Scholar
  76. Dverstorp B, Geier J, Voss CI (1996) Simple evaluation of groundwater flux and radionuclide transport at Äspö, SKI-96, 14 (SITE-94), Swedish Nuclear Power Inspectorate, 118 ppGoogle Scholar
  77. Dykhuizen RC (1990) A new coupling term for dual porosity models. Water Resour Res 26(2):351–356Google Scholar
  78. Evans DD, Nicholson TJ, Rasmussen TC (eds) (2001) Flow and transport through unsaturated fractured rock. Geophys Monogr Ser, vol 42, 2nd edn, Am Geophys Union, Washington, DCGoogle Scholar
  79. Faybishenko B (1999) Evidence of chaotic behavior in flow through fractured rocks, and how we might use chaos theory in fractured rock hydrology. In: Proc Intern Symp Dynamics of Fluids in Fractured Rocks in Honor of Paul A. Witherspoon’s 80th Birthday, Rep. LBNL-42718, Lawrence Berkeley Lab, Berkeley, CaliforniaGoogle Scholar
  80. Faybishenko B, Benson SM (2000) Preface, ix. In: Faybishenko B, Witherspoon PA, Benson SM (eds) (2000) Dynamics of fluids in fractured rock. Geophys Monogr 122, Am Geophys Union, Washington, DCGoogle Scholar
  81. Faybishenko B, Witherspoon PA, Benson SM (eds) (2000) Dynamics of fluids in fractured rock. Geophys Monogr 122, Am Geophys Union, Washington, DC, 400 ppGoogle Scholar
  82. Flint AL, Flint LE, Bodvarsson GS, Kwicklis EM, Fabryka-Martin J (2001) Development of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada. In: National Research Council (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 47–85Google Scholar
  83. Folger PF, Poeter E, Wanty RB, Day W, Frishman D (1999) 222Rn transport in a fractured crustalline rock aquifer: results from numerical simulations. J Hydrol 195(1–4):45–77Google Scholar
  84. Gale J, Macleod R, Welhan J, Cole C, Vail L (1987) Hydrogeological characterization of the Stripa Site, Stripa Project TR 87–15. SKB, Stockholm, SwedenGoogle Scholar
  85. Gale JE (1990) Hydraulic behavior of rock joints. In: Barton N, Stephansson O (eds) Rock joints. AA Balkema, Brookfield, VA, pp 351–362Google Scholar
  86. Gale JE, Rouleau A, Atkinson LC (1985) Hydraulic properties of fractures. In: Neuman SP, Simpson ES (eds) Proceedings of the Memoirs of the 17th Int Congress of IAH, Tucson, Arizona, XVII, 1–16Google Scholar
  87. Gell-Mann M (1994) The quark and the jaguar; adventures in the simple and the complex. WH Freeman, New York, 392 ppGoogle Scholar
  88. Gentier S (1986) Morphologie et comportement hydromecanique d’une fracture naturelle dans un granite sous contrainte normale, Doctoral Thesis, Univ. d’Orleans, FranceGoogle Scholar
  89. Gerke HH, van Genuchten MT (1993a) A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour Res 29:305–319CrossRefGoogle Scholar
  90. Gerke HH, van Genuchten MT (1993b) Evaluation of a first-order water transfer term for variably saturated dual-porosity models. Water Resour Res 29:1225–1238CrossRefGoogle Scholar
  91. Glass RJ, Conrad SH, Peplinski W (2000) Gravity destabilized non-wetting phase invasion in macroheterogeneous porous media: experimental observations of invasion dynamics and scale analysis. Water Resour Res 36(11):3121–3137Google Scholar
  92. Glass RJ, Nicholl MJ (1996) Physics of gravity fingering of immiscible fluids within porous media: an overview of current understanding and selected complicating factors. Geoderma 70:133–163Google Scholar
  93. Glass RJ, Nicholl MJ, Pringle SE, Wood TR (2002a) Unsaturated flow through a fracture-matrix network: dynamic preferential pathways in mesoscale laboratory experiments. Water Resour Res 38(12), 1281,  DOI:10.1029/2001WR001002
  94. Glass RJ, Nicholl MJ, Rajaram H, Wood TR (2003) Unsaturated flow through fracture networks: evolution of liquid phase structure, dynamics, and the critical importance of fracture intersections. Water Resour Res 39(12), 1352,  DOI:10.1029/2003WR002015
  95. Glass RJ, Nicholl MJ, Ramirez AL, Daily WD (2002b) Liquid phase structure within an unsaturated fracture network beneath a surface infiltration event: field experiment. Water Resour Res 38(10), 1199,  DOI:10.1029/2000WR000167
  96. Gonzalez DD (1983) Groundwater flow in the Rustler Formation, Waste Isolation Pilot Plant (WIPP), Southeast New Mexico (SENM), Interim Rep. SAND82–1012, Sandia Natl. Lab, Albuquerque, NMGoogle Scholar
  97. Grindrod P, Impey MD (1993) Channeling and Fickian dispersion in fractal simulated porous-media. Water Resour Res 29(12):4077–4089Google Scholar
  98. Gringarten AC (1982) Flow-test evaluation of fractured reservoirs. Spec Pap 189, Geol Soc Am, 17 ppGoogle Scholar
  99. Gringarten AC (1984) Interpretation of tests in fissured and multilayered reservoirs with double-porosity behavior—theory and practice. J Petrol Technol 36(4):549–564Google Scholar
  100. Gringarten AC (1987a) Type-curve analysis—what it can and cannot do. J Petrol Technol 39(1):11–13Google Scholar
  101. Gringarten AC (1987b) How to recognize double-porosity systems from well tests. J Petrol Technol 39(6):631–633Google Scholar
  102. Guéguen Y, Boutéca M (2004) Mechanics of fluid saturated rocks. Academic Press, New York, 416 ppGoogle Scholar
  103. Guimerá J, Carrera J (2000) A comparison of hydraulic and transport parameters measured in low-permeability fractured media. J Contamin Hydrol 41:261–281CrossRefGoogle Scholar
  104. Guzman AG, Geddis AM, Henrich MJ, Lohrstorfer CF, Neuman SP (1996) Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the apache leap research site: results of steady-state test interpretation. Rep. NUREG/CR-6360, prepared for U.S. Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  105. Hakami E, Larssen E (1996) Aperture measurements and flow experiments on a single natural fracture. Int J Rock Mech Sci Geomech Abstr 33(4):395–404CrossRefGoogle Scholar
  106. Haldeman WR, Chuang Y, Rasmussen TC, Evans DD (1991) Laboratory analysis of fluid flow and solute transport through a fracture embedded in porous tuff. Water Resour Res 27(1):53–65Google Scholar
  107. Herbert A, Gale J, Lanyon G, MacLeod R (1991) Modeling for the Stripa Site characterization and validation drift inflow: prediction of flow through fractured rock. SKB Stripa Project Tech Rep 91–35. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  108. Herbert A, Splawski B (1990) Prediction of inflow into the D-holes at the Stripa Mine. SKB Stripa Project Tech. Rep. 90–14, SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  109. Ho CK (1997) Models of fracture-matrix interactions during multiphase heat and mass flow in unsaturated fractured porous media, paper presented at Sixth Symp on Multiphase Transport in Porous Media, ASME Intern Mech Eng Congress and Expo, Am Soc Mech Eng, Dallas, TexasGoogle Scholar
  110. Hsieh PA, Neuman SP (1985) Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 1. Theory. Water Resour Res 21(11):1655–1665Google Scholar
  111. Hsieh PA, Neuman SP, Stiles GK, Simpson ES (1985) Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks. Water Resour Res 21(11):1667–1676Google Scholar
  112. Hyun Y, Neuman SP, Vesselinov VV, Illman WA, Tartakovsky DM, Di Federico V (2002) Theoretical interpretation of a pronounced permeability scale effect in unsaturated fractured tuff. Water Resour Res 38(6),  DOI:10.1029/2001WR000658
  113. Illman WA, Neuman SP (2000) Type-curve interpretation of multi-rate single-hole pneumatic injection tests in unsaturated fractured rock. Ground Water 38(6):899–911Google Scholar
  114. Illman WA, Neuman SP (2001) Type-curve interpretation of a cross-hole pneumatic injection test in unsaturated fractured tuff. Water Resour Res 37(3):583–603CrossRefGoogle Scholar
  115. Illman WA, Neuman SP (2003) Steady state analysis of cross-hole pneumatic injection tests in unsaturated fractured tuff. J Hydrol 281(1–2):36–54Google Scholar
  116. Illman WA, Thompson DL, Vesselinov VV, Neuman SP (1998) Single-hole and cross-hole pneumatic tests in unsaturated fractured tuffs at the Apache Leap Research Site: phenomenology, spatial variability, connectivity and scale. Rep. NUREG/CR-5559, prepared for US Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  117. Inoue J, Sugita H (2003) Fourth-order approximation of fluid flow through rough-walled rock fracture. Water Resour Res 39(8), 1202,  DOI:10.1029/2002WR001411
  118. Isakov E, Ogilvie SR, Taylor CW, Glover PWJ (2001) Fluid flow through rough fractures in rocks I: high-resolution aperture determinations, Earth Planet Sci Lett 191:267–282Google Scholar
  119. Jardine PM, Wilson GV, Luxmoore RJ, Gwo JP (2001) Conceptual model of vadose-zone transport in fractured weathered shale. In: National Research Council (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, pp 87–114 Google Scholar
  120. Ji S-H, Lee K-K, Park Y-C (2004) Effects of the correlation length on the hydraulic parameters of a fracture network. Transport Porous Media 55:153–168CrossRefGoogle Scholar
  121. Johns RA, Roberts PV (1991) A solute transport model for channelized flow in a fracture. Water Resour Res 27(8):1797–1808Google Scholar
  122. Jones JW, Simpson ES, Neuman SP, Keys WS (1985) Field and theoretical investigations of fractured crystalline rock near Oracle, Arizona. Rep. NUREG/CR-3736, prepared for US Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  123. Jones TL, Kelley VA, Pickens JF, Upton DT, Beauheim RL, Davies PB (1992) Integration of interpretation results of tracer tests performed in the Culebra dolomite at the Waste Isolation Pilot Plant site. Rep. SAND92–1579, Sandia Nat Lab, Albuquerque, NMGoogle Scholar
  124. Kazemi H (1969) Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. Trans Soc Petrol Eng, AIME 246:451–462Google Scholar
  125. Köhne JM, Köhne S, Gerke HH (2002) Estimating the hydraulic functions of dual-permeability models from bulk soil data. Water Resour Res 38(7), 1121,  DOI:10.1029/2001WR000492
  126. Kimmeier F, Perrochet P, Andrews R, Kiraly L (1985) Simulation par Modele Mathematique des Ecoulement Souterrains entre les Alpes et la Foret Noire, NAGRA Technischer Bericht, NTB 84–50Google Scholar
  127. Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge, 271 ppGoogle Scholar
  128. Konzuk JS, Kueper BH (2004) Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour Res 40, W02402,  DOI:10.1029/2003WR002356
  129. Kostner A (1993) Geostatistical and numerical analysis of flow in a crystalline rock mass. MS Thesis, Department of Hydrology and Water Resources, University of Arizona, Tucson, ArizonaGoogle Scholar
  130. Kuusela-Lahtinen A, Niemi A, Luukkonen A (2003) Flow dimension as an indicator of hydraulic behavior in site characterization of fractured rock. Groundwater 41(3):333–341Google Scholar
  131. Lachassagne P, Pinault J-L, Laporte P (2001) Radon 222 emanometry: a relevant methodology for water well sitting in hard rock aquifers. Water Resour Res 37(12):3131–3148Google Scholar
  132. Lapcevic PA, Novakowski KS, Sudicky EA (1999) The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow. Water Resour Res 35(8):2301–2312CrossRefGoogle Scholar
  133. Lavenue M, de Marsily G (2001) Three-dimensional interference test interpretation in a fractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675CrossRefGoogle Scholar
  134. Lee C-H, Farmer I (1993) Fluid flow in discontinuous rock. Chapman & Hall, London, 169 ppGoogle Scholar
  135. Lee J, Kang JM, Choe J (2003) Experimental analysis on the effects of variable aperture on tracer transport. Water Resour Res 39(1), 1015,  DOI:10.1029/2001WR001246
  136. Lee SH, Lough MF, Jensen CL (2001) Hierarchical modeling of flow in naturally fractured formations with multiple length scales. Water Resour Res 37(3):443–455CrossRefGoogle Scholar
  137. Liu HH, Bodvarsson GS (2001) Constitutive relations for unsaturated flow in fracture networks. J Hydrol 252:116–125CrossRefGoogle Scholar
  138. Liu HH, Bodvarsson GS, Finsterle S (2002) A note on unsaturated flow in two-dimensional fracture networks. Water Resour Res 38(9), 1176,  DOI:10.1029/2001WR000977
  139. Lloyd JW (ed) (1999) Water resources of hard rock aquifers in arid and semi-arid zones. UNESCO Publ 58, ParisGoogle Scholar
  140. Loggia D, Gouze P, Greswell R, Parker DJ (2004) Investigation of the geometrical dispersion regime in a single fracture using positron emission projection imaging. Transport Porous Media 55:1–20Google Scholar
  141. Makurat A (1985) The effect of shear displacement on the permeability of natural rough joints. In: Neuman SP, Simpson ES (eds) Proceedings of the Memoirs of the 17th Int Congress of IAH, Tucson, Arizona, XVII, 99–106Google Scholar
  142. Margolin G, Berkowitz B, Scher H (1998) Structure, flow, and generalized conductivity scaling in fracture networks. Water Resour Res 34(9):2103–2121Google Scholar
  143. Marschall P, Elert M (2003) Overall evaluation of the modelling of the TRUE-1 tracer tests – Task 4, The Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes. Tech Rep TR-03–12. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  144. Martínez-Landa L, Carrera J, Guimerà J, Vazquez-Suñé E, Vives L, Meier P (2000) Methodology for the hydraulic characterization of a granitic block. In: Stauffer F, Kinzelbach W, Kovar K, Hoehn E (eds) Calibration and reliability in groundwater modelling; coping with uncertainty. ModelCARE 99, IAHS Publication 265, IAHS Press, Wallingford, Oxfordshire, UK, pp 340–345Google Scholar
  145. McDermott CI, Sauter M, Liedl R (2003) New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples. J Hydrol 278, 51–63,  DOI:10.1016/S0022–1694(03)00132-X
  146. McKenna SA, Meigs LC, Haggerty R (2001) Tracer tests in a fractured dolomite, 3. Double-porosity, multiple-rate mass transfer processes in convergent flow tracer tests. Water Resour Res 37(5):1143–1154CrossRefGoogle Scholar
  147. McKenna SA, Walker DD, Arnold B (2003) Modeling dispersion in three-dimensional heterogeneous fractured media at Yucca Mountain. J Contam Hydrol 62–63:577–594Google Scholar
  148. Meier PM, Medina A, Carrera J (2001) Geostatistical inversion of cross-hole pumping tests for identifying preferential flow channels within shear zones. Ground Water 39(1):10–17Google Scholar
  149. Meigs LC, Beauheim RL (2001) Tracer tests in fractured dolomite, 1. Experimental design and observed tracer recoveries. Water Resour Res 37(5):1113–1128CrossRefGoogle Scholar
  150. Moench AF (1984) Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour Res 20:831–846Google Scholar
  151. Moench AF (1995) Convergent radial dispersion in a double-porosity aquifer with fracture skin—Analytical solution and application to a field experiment in fractured chalk. Water Resour Res 31(8):1823–1835Google Scholar
  152. Moreno L, Neretnieks I (1993) Fluid flow and solute transport in a network of channels. J Contam Hydrol 14(3–4):163–192Google Scholar
  153. Moreno L, Tsang CF (1991) Multiple-peak response to tracer injection tests in single fractures: a numerical study. Water Resour Res 27(8):2143–2150CrossRefGoogle Scholar
  154. Moreno L, Tsang YW, Tsang C-F, Hale FV, Neretnieks I (1988) Flow and tracer transport in a single fracture: a stochastic model and its relations to some field observations. Water Resour Res 24(12):2033–2048Google Scholar
  155. Mourzenko VV, Yousefian F, Kolbah B, Thoveert J-F, Adler PM (2002) Solute transport at fracture intersections. Water Resour Res 38(1), 1000,  DOI:10.1029/2000WR000211
  156. National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC, 551 ppGoogle Scholar
  157. National Research Council (2001) Conceptual models of flow and transport in the fractured vadose zone. National Academy Press, Washington, DC, 374 ppGoogle Scholar
  158. Neretnieks I (1980) Diffusion in the rock matrix: an important factor in radionuclide retardation? J Geophys Res 85:4379–4397Google Scholar
  159. Neretnieks I (1993) Solute transport in fractured rock: applications to radionuclide waste repositories. In: Bear J, Tsang CF, de Marsily G (eds) Flow and contaminant transport in fractured rock. Academic Press, San Diego, pp 39–127Google Scholar
  160. Neretnieks I, Eriksen T, Tahtinen P (1982) Tracer movement in a single fissure in granitic rock: some experimental results and their interpretation. Water Resour Res 18(4):849–858Google Scholar
  161. Neuman SP (1987) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts. In: Farmer IW, Daemen JJK, Desai CS, Glass CE, Neuman SP (eds) Rock Mechanics. Proceedings of the 28th US Symposium, Tucson, Arizona. AA Balkema, Rotterdam, 1240 ppGoogle Scholar
  162. Neuman SP (1988) A proposed conceptual framework and methodology for investigating flow and transport in Swedish crystalline rocks, Arbetsrapport, pp 88–37. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, 39 ppGoogle Scholar
  163. Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758CrossRefGoogle Scholar
  164. Neuman SP (1991) “Reply” to comments on “Universal scaling of hydraulic conductivities and dispersivities in geologic media.” by M.P. Anderson, Water Resour Res 27(6):1384–1385Google Scholar
  165. Neuman SP (1994) Generalized scaling of permeabilities: validation and effect of support scale. Geophys Res Lett 21(5):349–352CrossRefGoogle Scholar
  166. Neuman SP (1995) On advective dispersion in fractal velocity and permeability fields. Water Resour Res 31(6):1455–1460CrossRefGoogle Scholar
  167. Neuman SP (2003a) Relationship between juxtaposed, overlapping and fractal representations of multimodal spatial variability. Water Resour Res 9(8), 1205, 10.1029/2002WR001755Google Scholar
  168. Neuman SP (2003b) Maximum likelihood Bayesian averaging of alternative conceptual-mathematical models. Stochastic Environmental Research and Risk Assessment 17(5), 291–305,  DOI:10.1007/s00477-003-0151-7
  169. Neuman SP (2004) On the tensorial nature of advective porosity. Adv Water Resour (in press)Google Scholar
  170. Neuman SP, Chen G (1996) On instability during immiscible displacement in fractures and porous media. Water Resour Res 32(6):1891–1894Google Scholar
  171. Neuman SP, Depner JS (1988) Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. J Hydrol 102:475–501CrossRefGoogle Scholar
  172. Neuman SP, Di Federico V (2003) Multifaceted nature of hydrogeologic scaling and its interpretation. Rev Geophys 41(3), 1014,  DOI:10.1029/2003RG000130
  173. Neuman SP, Neretnieks I (eds) (1990) Hydrogeology of low-permeability environments. Selected papers on hydrogeology, vol. 2, Verlag Heinz Heise, Hannover, Germany, 268 ppGoogle Scholar
  174. Neuman SP, Simpson ES (eds) (1985) Hydrogeology of rocks of low permeability. Memoirs of Int Assoc Hydrogeol, vol XVII, Parts 1 and 2, Proc 17th Int IAH Congress, Tucson, Arizona, 862 ppGoogle Scholar
  175. Neuman SP, Walter GR, Bentley HW, Ward JJ, Gonzalez DD (1984) Determination of horizontal aquifer anisotropy with three wells. Ground Water 22(1):66–72Google Scholar
  176. Neuman SP, Wierenga PJ (2003) A comprehensive strategy of hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. NUREG/CR-6805, prepared for US Nuclear Regulatory Commission, Washington, DCGoogle Scholar
  177. Novakowski KS, Evans GV, Lever DA, Raven KG (1985) A field example of measuring hydrodynamic dispersion in a single fracture. Water Resour Res 21(8):1165–1174Google Scholar
  178. Olsson O, Black J, Gale J, Holmes D (1989) Site characterization and validation stage 2 – preliminary predictions. Stripa Project Tech Rep 89–03. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  179. Or D, Tuller M (2000) Flow in unsaturated fractured porous media: hydraulic conductivity of rough surfaces. Water Resour Res 36(5):1165–1177CrossRefGoogle Scholar
  180. Pan L, Bodvarsson GS (2002) Modeling transport in fractured porous media with the random-walk particle method: the transient activity range and the particle transfer probability. Water Resour Res 38(6), 1080,  DOI:10.1029/2001WR000901
  181. Park CK, Vandergraaf TT, Drew DJ, Hahn PS (1997) Analysis of the migration of nonsorbing tracers in a natural fracture in granite using a variable aperture channel model. J Contam Hydrol 26(1–4):97–108Google Scholar
  182. Park Y-J, de Dreuzy J-R, Lee K-K, Berkowitz B (2001b) Transport and intersection mixing in random fracture networks with power law length distributions. Water Resour Res 37(10):2493–2501CrossRefGoogle Scholar
  183. Park Y-J, Lee K-K, Berkowitz B (2001a) Effects of junction transfer characteristics on transport in fracture networks. Water Resour Res 37(4):909–923CrossRefGoogle Scholar
  184. Park Y-J, Lee K-K, Kosakowski G, Berkowitz B (2003) Transport behavior in three-dimensional fracture intersections. Water Resour Res 39(8), 1215,  DOI:10.1029/2002WR001801
  185. Peters RR, Klavetter EA (1988) A continuum model for water movement in an unsaturated fractured rock mass. Water Resour Res 24:416–430Google Scholar
  186. Plouraboué F, Hulin JP, Roux S, Koplik J (1998) Numerical study of geometric dispersion in self-affine rough fractures. Phys Rev E 58(3):3334–3346CrossRefGoogle Scholar
  187. Polak A, Elsworth D, Liu J, Grader AS (2004) Spontaneous switching of permeability changes in a limestone fracture with net dissolution. Water Resour Res 40 (3), W03502,  DOI:10.1029/2003WR002717
  188. Polak A, Elsworth D, Yasuhara H, Grader AS, Halleck PM (2003c) Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophys Res Lett 30(20), 2020,  DOI:10.1029/2003GL017575
  189. Polak A, Grader AS, Wallach R, Nativ R (2003a) Tracer diffusion from a horizontal fracture into the surrounding matrix: measurement by computed tomography. J Contam Hydrol 67(1–4):95–112Google Scholar
  190. Polak A, Grader AS, Wallach R, Nativ R (2003b) Chemical diffusion between a fracture and the surrounding matrix: measurement by computed tomography and modeling. Water Resour Res 39(4),  DOI:10.1029/2001WR000813
  191. Power WL, Tullis TE (1995) Review of the fractal character of natural fault surfaces with implications for friction and the evolution of fault zones. In: Barton CC, La Pointe PR (eds) Fractals in the earth sciences. Plenum Press, New York, pp 89–105Google Scholar
  192. Power WL, Tullis TE et al. (1987) Roughness of natural fault surfaces. Geophys Res Lett 14(1):29–32Google Scholar
  193. Priest SD (1993) Discontinuity analysis for rock engineering. Chapman & Hall, London, 473 ppGoogle Scholar
  194. Pruess K (1999) A mechanistic model for water seepage through thick unsaturated zones in fractured rocks of low matrix permeability. Water Resour Res 35(4):1039–1051Google Scholar
  195. Pruess K, Narasimhan TN (1985) A practical method to modeling fluid and heat flow in fractured porous media. Soc Petrol Eng J 25(1):14–26Google Scholar
  196. Pruess K, Wang JSY, Tsang YW (1990) On thermohydrologic conditions near high-level nuclear waste emplaced in partially saturated fractured tuff: 2. Effective continuum approximation. Water Resour Res 26:1249–1261Google Scholar
  197. Reimus P, Pohll G, Mihevc T, Chapman J, Haga M, Lyles B, Kosinski S, Niswonger R, Sanders P (2003) Testing and parameterizing a conceptual model for solute transport in a fractured granite using multiple tracers in a forced gradient test. Water Resour Res 39(12), 1356,  DOI:10.1029/2002WRR001597
  198. Renshaw CE, Dadkis JS, Brown SR (2000) Measuring fracture apertures: a comparison of methods. Geophys Res Lett 27(2):289–292CrossRefGoogle Scholar
  199. Rhén I, Smellie J (2003) Task force on modelling of groundwater flow and transport of solutes, Task 5 Summary report, Tech Rep TR-03–01. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  200. Robinson N, Sharp Jr JM, Kreisel I (1998) Contaminant transport in sets of parallel finite fractures with fracture skins. J Contam Hydrol 31:83–109CrossRefGoogle Scholar
  201. Romm ES, Pozinenko BV (1963) Permeability of anisotropic fractured rocks (in Russian). Eng J 3(2):381–386Google Scholar
  202. Rouhiainen P, Pöllänen J (1999) Difference flow measurements in boreholes KA2865A01, KA3065A02 and KTTX5 at the Äspö HRL, International Technical Document ITD-99–25, Swedish Nuclear Fuel and Waste Management Co, Stockholm, SwedenGoogle Scholar
  203. Roux S, Plouraboué F, Hulin JP (1998) Tracer dispersion in rough open cracks. Transport Porous Media 32(1):97–116CrossRefGoogle Scholar
  204. Rubin Y (2003) Applied stochastic hydrology. Oxford University Press, Oxford, 416 ppGoogle Scholar
  205. Sahimi M (1995) Flow and transport in porous media and fractured rock: from classical methods to modern approaches. Wiley, New York, 483 ppGoogle Scholar
  206. Salve R, Oldenburg CM (2001) Water flow within a fault in altered nonwelded tuff. Water Resour Res 37(12):3043–3056CrossRefGoogle Scholar
  207. Salve R, Wang JSY, Daughty C (2002) Liquid-release tests in unsaturated fractured welded tuffs: 1. Field investigations. J Hydrol 256:60–79Google Scholar
  208. Shapiro AM (2001) Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour Res 37(3):507–522CrossRefGoogle Scholar
  209. Shapiro AM, Hsieh PA (1991) Research in fractured-rock hydrogeology: characterizing fluid movement and chemical transport in fractured rock at the Mirror Lake drainage basin. In: Mallard GE, Aronson DA (eds) Proceedings of the Technical Meeting of US Geological Survey Toxic Substances Hydrology Program, Monterey, Calif., March 11–15, (also Water Resources Investigation Report 91–4034, US Geological Survey), Reston, VirginiaGoogle Scholar
  210. Shapiro AM, Hsieh PA (1998) How good are estimates of transmissivity from slug tests in fractured rock? Ground Water 36(1):37–48Google Scholar
  211. Shapiro AM, Nicholas J (1989) Assessing the validity of the channel model of fracture apertures under field conditions. Water Resour Res 25(5):817–828Google Scholar
  212. Sharp Jr JM, Kreisel I, Milliken KL, Mace RE, Robinson NI (1996) Fracture skin properties and effects in solute transport: geotechnical and environmental implications. In: Proc 2nd North Am Rock Mech Symp, vol. 2, AA Balkema, Brookfield, Vt. pp 1329–1336Google Scholar
  213. Silliman SE (1989) An interpretation of the difference between aperture estimates derived from hydraulic and tracer tests in a single fracture. Water Resour Res 25(10):2275–2283Google Scholar
  214. Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer Academic Publishers, Dordrecht, The Netherlands, 400 ppGoogle Scholar
  215. SKB Swedish Nuclear Fuel and Waste Management Co. (1993) SKB Annual Report 1992, SKB Stripa Project Technical Report TR 92–46, Stockholm, SwedenGoogle Scholar
  216. SKB Swedish Nuclear Fuel and Waste Management Co. (2003a) Task force on modelling of groundwater flow and transport of solutes, Task 5 Summary report. SKB Technical Report TR-03–01, Stockholm, SwedenGoogle Scholar
  217. SKB Swedish Nuclear Fuel and Waste Management Co. (2003b) Overall evaluation of the modelling of the TRUE-1 tracer tests—Task 4, The Äspö Task Force on Modelling of Groundwater Flow and Transport of Solutes. SKB Technical Report TR-03-12, Stockholm, SwedenGoogle Scholar
  218. Snow DT (1969) Anisotropic permeability of fractured media, Water Resour Res 5(6):1273–1289Google Scholar
  219. Soll W, Birdsell K (1998) The influence of coatings and fills on flow in fractured, unsaturated tuff porous media systems. Water Resour Res 34(2):193–202CrossRefGoogle Scholar
  220. Su GW, Geller JT, Pruess K, Wen F (1999) Experimental studies of water seepage and intermittent flow in unsaturated, rough-walled fractures. Water Resour Res 35(4):1019–1037Google Scholar
  221. Su GW, Geller JT, Pruess K, Wen F (2001) Solute transport along preferential flow paths in unsaturated fractures. Water Resour Res 37(10):2481–2491CrossRefGoogle Scholar
  222. Su GW, Nimmo JR, Dragila MI (2003) Effect of isolated fractures on accelerated flow in unsaturated porous media. Water Resour Res 39(12), 1326,  DOI:10.1029/2002WR001691
  223. Thoma SG, Gallegos DP, Smith DM (1992) Impact of fracture coatings on fracture/matrix flow interactions in unsaturated, porous media. Water Resour Res 28(5):1357–1367CrossRefGoogle Scholar
  224. Tokunaga TK, Wan J (1997) Water film flow along fracture surfaces of porous rock. Water Resour Res 33(6):1287–1295CrossRefGoogle Scholar
  225. Tokunaga TK, Wan J (2001) Approximate boundaries between different flow regimes in fractured rocks. Water Resour Res 37(8):2103–2111CrossRefGoogle Scholar
  226. Tsang C-F (1984) The effect of tortuosity of fluid flow through a single fracture. Water Resour Res 20(9):1209–1215Google Scholar
  227. Tsang C-F (1992) Usage of “equivalent apertures” for rock fractures as derived from hydraulic and tracer tests. Water Resour Res 28(5):1451–1455CrossRefGoogle Scholar
  228. Tsang C-F, Daughty C (2003) A particle-tracking approach to simulating transport in a complex fracture. Water Resour Res 39(7), 1174,  DOI:10.1029/2002WR001614
  229. Tsang C-F, Neretnieks I (1998) Flow channeling in heterogeneous fractured rocks. Rev Geophys 36(2):275–298CrossRefGoogle Scholar
  230. Tsang C-F, Neuman SP (1995) Introduction and general comments on INTRAVAL Phase 2, Working Group 2, Test Cases, In: The International Intraval Project, Phase 2, NEA/OECD, Paris, FranceGoogle Scholar
  231. Tsang C-F, Tsang YW, Hale FV (1991) Tracer transport in fractures: analysis of field data based on a variable-aperture channel model. Water Resour Res 27(12):3095–3106Google Scholar
  232. Tsang YW, Tsang C-F (1987) Channel model of flow through fractured media. Water Resour Res 23(3):467–479Google Scholar
  233. Tsang YW, Tsang C-F (1989) Flow channeling in a single fracture as a two-dimensional strongly heterogeneous permeable medium. Water Resour Res 25(9):2076–2080Google Scholar
  234. Tsang YW, Tsang C-F, Hale FV, Dverstörp B (1996) Tracer transport in a stochastic continuum model of fractured media. Water Resour Res 32(10):3077–3092CrossRefGoogle Scholar
  235. Van Golf-Racht TD (1982) Fundamentals of fractured reservoir engineering. Dev Petrol Sci 12, Elsevier, Amsterdam, 710 ppGoogle Scholar
  236. Vandersteen K, Carmeliet J, Feyen J (2003) A network modeling approach to derive unsaturated hydraulic properties of a rough-walled fracture. Transport Porous Media 50:197–221CrossRefGoogle Scholar
  237. Vesselinov VV, Neuman SP (2001) Numerical inverse interpretation of single-hole pneumatic tests in unsaturated fractured tuff. Ground Water 39(5):685–695PubMedGoogle Scholar
  238. Vesselinov VV, Neuman SP, Illman WA (2001a) Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 1. Methodology and borehole effects. Water Resour Res 37(12):3001–3018CrossRefGoogle Scholar
  239. Vesselinov VV, Neuman SP, Illman WA (2001b) Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3042CrossRefGoogle Scholar
  240. Vickers BC, Neuman SP, Sully MJ, Evans DD (1992) Reconstruction and geostatistical analysis of multiscale fracture apertures in a large block of welded tuff. Geophys Res Lett 19(10):1029–1032Google Scholar
  241. Warren JE, Root PJ (1963) The behavior of naturally fractured reservoirs. Soc Petrol Eng J 3:245–255Google Scholar
  242. Weisbrod N, Dahan O, Adar E (2002) Particle transport in unsaturated fractured chalk under arid conditions. J Contam Hydrol 56:117–136PubMedGoogle Scholar
  243. Weisbrod N, Nativ R, Adar E, Ronen D (1999) Impact of intermittent rainwater and wastewater flow on coated and uncoated fractures in chalk. Water Resour Res 35(11):3211–3222CrossRefGoogle Scholar
  244. Weisbrod N, Nativ R, Adar E, Ronen D, Ben-Nun A (2000) Impact of coating and weathering on the properties of chalk fracture surfaces. J. Geophys Res 105(B12), 27:853–864Google Scholar
  245. Weisbrod N, Nativ R, Ronen D, Adar E (1998) On the variability of fracture surfaces in unsaturated chalk. Water Resour Res 34(8):1881–1887CrossRefGoogle Scholar
  246. Winberg A (1991) Analysis of spatial correlation of hydraulic conductivity data from the Stripa Mine, Stripa Project Tech Rep 91–28. SKB Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  247. Winberg A, Andersson P, Poteri A, Cvetkovic V, Dershowitz W, Hermanson J, Gómez-Hernández JJ, Hautojärvi A, Billaux D, Tullborg E-L, Holton D, Meier P, Medina A (2003) Final report of the TRUE Block Scale project, 4. Synthesis of flow, transport and retention in the block scale. SKB Technical Report TR-02–16, Swedish Nuclear Fuel and Waste Management Co., Stockholm, SwedenGoogle Scholar
  248. Wu Y-S, Zhang W, Pan L, Hinds J, Bodvarsson GB (2002) Modeling capillary barriers in unsaturated fractured rock. Water Resour Res 38(11), 1253,  DOI:10.1029/2001WR000852
  249. Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res 40(5), WO5113,  DOI:10.1029/2003WR002557
  250. Zhang D (2001) Stochastic methods for flow in porous media: coping with uncertainty. Academic Press, New York, 336 ppGoogle Scholar
  251. Zhang D, Zhang R, Chen S, Soll WE (2000) Pore scale study of flow porous media: scale dependency, REV, and statistical REV. Geophys Res Lett 27(8):1195–1198CrossRefGoogle Scholar
  252. Zhang X, Sanderson DJ (2002) Numerical modelling and analysis of fluid flow and deformation of fractured rock masses. Elsevier Science, 300 ppGoogle Scholar
  253. Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transport Porous Media 23(1):1–30Google Scholar
  254. Zimmerman RW, Chen G, Hadgu T, Bodvarsson GS (1993) A numerical dual-porosity model with semianalytical treatment of fracture/matrix flow. Water Resour Res 29(7):2127–2137CrossRefGoogle Scholar
  255. Zimmerman RW, Yeo IW (2000) Fluid flow in rock fractures: from the Navier-Stokes equations to the cubic law. In: Faybishenko B, Witherspoon PA, Benson SM (eds) Dynamics of fluids in fractured rock. Am Geophys Union Geophys Monogr 122:213–224Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Hydrology and Water ResourcesUniversity of ArizonaTucsonUSA

Personalised recommendations