Advertisement

Hydrogeology Journal

, Volume 13, Issue 5–6, pp 653–664 | Cite as

A new technique to estimate net groundwater use across large irrigated areas by combining remote sensing and water balance approaches, Rechna Doab, Pakistan

  • Mobin-ud-Din AhmadEmail author
  • Wim G. M. Bastiaanssen
  • Reinder A. Feddes
Paper

Abstract

Over-exploitation of groundwater resources threatens the future of irrigated agriculture, especially in the arid and semi-arid regions of the world. In order to reverse this trend, and to ensure future food security, the achievement of sustainable groundwater use is ranking high on the agenda of water policy makers. Spatio-temporally distributed information on net groundwater use—i.e. the difference between tubewell withdrawals for irrigation and net recharge—is often unknown at the river basin scale. Conventionally, groundwater use is estimated from tubewell inventories or phreatic surface fluctuations. There are shortcomings related to the application of these approaches. An alternative methodology for computing the various water balance components of the unsaturated zone by using geo-information techniques is provided in this paper. With this approach, groundwater recharge will not be quantified explicitly, but is part of net groundwater use, and the spatial variation can be quantitatively described. Records of routine climatic data, canal discharges at major offtakes, phreatic surface depth fluctuations, and simplified information on soil textural properties are required as input data into this new Geographic Information System and Remote Sensing tool. The Rechna Doab region (approximately 2.97 million ha), located in the Indus basin irrigation system of Pakistan, has been used as a case study. On an annual basis, an areal average net groundwater use of 82 mm year−1 was estimated. The current result deviates 65% from the specific yield method. The deviation from estimates using tubewell withdrawal related data is even higher.

Keywords

Remote sensing GIS Water balance Groundwater management Net groundwater use Recharge Irrigation management Sustainability Rechna Doab, Pakistan 

Résumé

La surexploitation des ressources en eau souterraine menace le futur de l’agriculture irrigué, spécialement dans les zones arides et semi-arides du monde. De manière à renverser la tendance, et d’assurer la sécurité alimentaire, l’utilisation durable des eaux souterraines est devenue une priorité dans l’agenda des politiques de l’eau. La distribution spatio-temporelle de l’usage net de l’eau souterraine (la différence entre l ‹eau pompée et la recharge nette) est rarement connue à l’échelle d’un bassin versant. Conventionnellement, l’utilisation des eaux souterraines est estimée à partir des données de rabattement ou les données de fluctuation du niveau de la nappe phréatique. Il y a des défauts dans ces approches. Une méthodologie alternative pour calculer les différents composants de la balance hydrologique est présentée dans cet article. Avec cette approche, la recharge des eaux souterraines ne sera pas quantifiée de manière explicite, mais sera considérée comme une part de l’utilisation nette en eau souterraine, et la variation spatiale peut être décrite quantitativement. Les chroniques des données climatiques, les débits du réseau hydrographique majeur, les fluctuations de la surface de la nappe phréatique, et des données basiques sur la texture du sol sont nécessaires et sont rentrées dans un nouveau Système d’Information Géographique et outil de télédétection. La région de Rechna Doab au Pakistan, environ 2.97 millions d’hectare, localisée dans le bassin irrigué de l’Indus, a été utilisé comme cas d’étude. Sur base annuelle, l’utilisation nette de l’eau souterraine est estimée à 82 mm. en moyenne. Le résultat obtenu diffère de 65% du résultat de la méthode du débit spécifique. La différence avec le résultat obtenu en observant le rabattement des puits est encore plus élevée.

Resumen

La sobre-explotación de recursos de agua subterránea amenaza el futuro de la agricultura de riego, especialmente en las regiones áridas y semi-áridas del mundo. Para revertir esta tendencia, y para garantizar seguridad alimentaria futura, la meta del uso sostenible del agua subterránea se encuentra alto en la agenda de los políticos. Información espacial y temporal en cuanto al uso neto de agua subterránea- i.e. la diferencia entre las extracciones de agua de pozos entubados para riego y recarga neta- se desconoce frecuentemente a la escala de cuenca hidrográfica. Generalmente, el uso de agua subterránea se estima a partir de inventarios de pozos o fluctuaciones de superficies freáticas. Existen deficiencias en relación con las aplicaciones de estos enfoques. En este artículo se aporta una metodología alternativa para calcular los diferentes componentes del balance hídrico de la zona no saturada utilizando técnicas geoinformativas. Aunque con este enfoque no se cuantifica de manera explícita la recarga de agua subterránea, la cual es parte del uso neto de agua subterránea, puede describirse cuantitativamente la variación espacial. Para esta nueva herramienta de Sistemas de Información Geográfica y Sensores Remotos se requieren datos de entrada como registros rutinarios de datos climáticos, descargas de canales en salidas principales, fluctuaciones de profundidades de superficies freáticas, e información simplificada de las propiedades texturales de los suelos. Se ha utilizado como estudio de caso la región Rechna Doab (aproximadamente 2.97 millones ha), localizada en el sistema de riego de la cuenca Indus de Pakistán. Se ha estimado un uso promedio areal anual de agua subterránea de 82 mm año−1. El resultado obtenido difiere en un 65% del método de productividad específica. La diferencia en relación a estimados provenientes de extracciones en pozos entubados es aún mucho más alta.

Notes

Acknowledgements

The authors wish to express their gratitude to the Punjab Irrigation Department (PID), Pakistan Meteorological Department (PMD), and Water And Power Development Authority (WAPDA) of Pakistan for making available the required information.

References

  1. Ahmad MD (2002) Estimation of net groundwater use in irrigated river basins using geo-information techniques: a case study in Rechna Doab, Pakistan. PhD Thesis, Wageningen University, Wageningen, 144 pp (http://www.gcw.nl/dissertations/3334/dis3334.pdf)
  2. Ahmad MD, Bastiaanssen WGM (2003) Retrieving soil moisture storage in the unsaturated zone from satellite imagery and bi-annual phreatic surface fluctuations. Irrig Drainage Sys 17(3):141–161CrossRefGoogle Scholar
  3. Allen RG, Pereira LS, Raes D, Smith M (1998). Crop evapotranspiration, guidelines for computing crop water requirements, FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations (FAO), Rome, 300 ppGoogle Scholar
  4. Bastiaanssen WGM, Ahmad MD, Chemin Y (2002) Satellite surveillance of evaporative depletion across the Indus Basin. Water Resour Res 38(12)1273Google Scholar
  5. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag, AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL), part 1: formulation. J Hydrol 212–213:198–212Google Scholar
  6. Bastiaanssen WGM, Noordman EJM, Pelgrum H, Davids G, Thoreson BP, Allen RG (2005) Use of SEBAL model with remotely sensed data to improve water resources management under actual field conditions. ASCE Irrigation and Drainage Engineering (in press)Google Scholar
  7. Boonstra J, Bhutta MN (1995) Groundwater recharge in irrigated agriculture: the theory and practice of inverse modelling. J Hydrol 174:357–374CrossRefGoogle Scholar
  8. Clarke R, Lawrence AR, Foster SSD (1996) Groundwater: a threatened resource. UNEP environment Library Series 15, UNEP, Geneva, http://www.unep.net/
  9. GOP (1994) Agriculture machinery census. Agriculture Census Organization, Statistics division, Government of Pakistan (GOP), LahoreGoogle Scholar
  10. Khan MA (1978) Hydrological data, Rechna Doab: lithology, mechanical analysis and water quality data of testholes/testwells, vol I. Publication no. 25, Project Planning Organization (NZ), Pakistan Water and Power Development Authority (WAPDA), LahoreGoogle Scholar
  11. Kustas WP, Diak GR, Moran MS (2003) Evapotranspiration, Remote Sensing of. Encyclopedia of Water Science, Dekker, New York, pp 267–274Google Scholar
  12. Maupin MA (1999) Methods to determine pumped irrigation-water withdrawals from the Snake River between upper Salmon Falls and Swan Falls dams, Idaho, using electrical power data, 1990–95. U.S. Geological Survey Water-Resources Investigation Report 99–4175, USGS, Littleton, Colorado, 20 ppGoogle Scholar
  13. Menenti M, Visser TNM, Morabito JA, Drovandi A (1989) Appraisal of irrigation performance with satellite data and georeferenced information. In (eds) Rydzewski and Ward, Irrigation, theory and practice. Proc. Int. Conf., 12–15 September 1989, Univ. of Southampton, Southhampton, pp 785–801Google Scholar
  14. NESPAK-SGI (National Engineering Services Pakistan Ltd.-Specialist Group, Inc.) (1991) Contribution of private tubewells in the development of water potential. Final report, Planning and Development Division, Ministry of Planning and Development, IslamabadGoogle Scholar
  15. Postel S (1999) The pillars of sand: Can the irrigation miracle last? The Worldwatch Institute, Washington, DCGoogle Scholar
  16. Scott CA, Bastiaanssen WGM, Ahmad MD (2003) Mapping root zone soil moisture using remotely optical imagery. ASCE Irrig Drainage Eng 129(5):326–335CrossRefGoogle Scholar
  17. Scott CA., Shah T (2004) Groundwater overdraft reduction through agricultural energy policy: insights from India and Mexico. Water Resour Devel 20(2):149–164CrossRefGoogle Scholar
  18. Shah T, Molden D, Sakthivadivel R, Seckler D (2000) The global groundwater situation: overview of opportunities and challenges. International Water Management Institute, Colombo, Sri Lanka, 21 pp. (http://www.iwmi.org)
  19. Tahir Z, Habib Z (2000) Land and water productivity: Trends across Punjab canal commands. Working Paper no. 14, Pakistan country series no.3, International Water Management Institute (IWMI), Colombo, Sri Lanka, 35 pp, (http://www.iwmi.org)

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Mobin-ud-Din Ahmad
    • 1
    Email author
  • Wim G. M. Bastiaanssen
    • 2
  • Reinder A. Feddes
    • 3
  1. 1.Hydrologist and Remote Sensing SpecialistInternational Water Management Institute (IWMI)ColomboSri Lanka
  2. 2.Water WatchWageningenThe Netherlands
  3. 3.Agrohydrology and Groundwater Management, Department of Water ResourcesWageningen UniversityWageningenThe Netherlands

Personalised recommendations