Hydrogeology Journal

, Volume 12, Issue 4, pp 389–407

Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model

  • Ward E. Sanford
  • L. Niel Plummer
  • Douglas P. McAda
  • Laura M. Bexfield
  • Scott K. Anderholm
Paper

Abstract

The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Survey’s software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago.

Keywords

Groundwater age Groundwater flow Hydrochemistry New Mexico Numerical modeling 

Résumé

Le calibrage d’un modèle hydrogéologique avec l’aide de données hydrochimiques a démontré que la recharge relativement faible dans le Grand Bassin du Middle Rio est vraisemblablement responsable d’une dépression des eaux souterraines dans le centre du bassin et de la présence d’une quantité substantielle d’eau du Rio Grande dans l’aquifère du Groupe de Santa Fe. Les modèles antérieurs avaient des difficultés à reproduire ses conclusions sans l’aide de données hydrochimiques pour contraindre les taux et la distribution de la recharge. L’objectif de cette étude était d’utiliser une grande quantité de données hydrochimiques permettant de calibrer les paramètres du modèle, et notamment les taux de recharge. Le modèle a été construit avec les logiciels MODFLOW, MODPATH et UCODE, et calibré en utilisant les concentrations en 14C et la position de certaines zones définies par les données hydrochimiques. L’estimation de certains paramètres a été réalisée en utilisant une combinaison de techniques de régression non linéaire et une méthode de recherche exhaustive (Brute Force Search) de l’erreur minimum entre les résultats des observations et les simulations. Les valeurs de la recharge calibrée sont substantiellement plus basses que celles estimées dans les modèles antérieurs. Les résultats d’une simulation en régime transitoire sur 30.000 ans suggèrent que la recharge au maximum de la dernière glaciation (last glacial maximum, LGM) était 10 fois supérieure au taux actuel, mais que la recharge qui a suivit la LGM était plus bas que la recharge actuelle.

Resumen

La calibración de un modelo de aguas subterráneas con el apoyo de datos hidroquímicos ha demostrado que la recarga relativamente baja en la cuenca media del Río Grande es probablemente responsable de una depresión de aguas subterráneas en el centro de la cuenca y de la presencia de una cantidad considerable de agua del Río Grande en el acuífero del Grupo Santa Fe. Los modelos propuestos con anterioridad para la cuenca tenían dificultades para reproducir estas características ya que no tenían datos hidroquímicos que permitieran delimitar los ritmos y distribución de recarga. El objetivo del presente estudio consistió en utilizar una gran cantidad de datos hidroquímicos disponibles para ayudar a calibrar los parámetros del modelo, incluyendo los ritmos de recarga. El modelo se construyó utilizando los modelos MODFLOW, MODPATH, y UCODE del USGS, mientras que la calibración se realizó en base a concentraciones de 14C y a la posición de ciertas zonas definidas con los datos hidroquímicos. La estimación de parámetros se realizó en base a una combinación de técnicas de regresiones no lineares y a una búsqueda a viva fuerza del error mínimo entre los datos observados y los simulados. Los valores de recarga calibrados fueron significativamente más bajos que los estimados en los modelos anteriores. Los resultados de una simulación transitoria de 30,000 años sugieren que la recarga durante la última glacial máxima (LGM) fue diez veces el ritmo moderno, pero que la recarga que ocurrió inmediatamente después de la LGM fue más baja que el ritmo moderno.

References

  1. Allen BD, Anderson RY (2000) A continuous, high-resolution record of late Pleistocene climate variability from the Estancia basin, New Mexico. Geol Soc Am Bull 112:1444–1458CrossRefGoogle Scholar
  2. Anderholm SK (1988) Groundwater geochemistry of the Albuquerque–Belen Basin, central New Mexico. US Geol Surv Water-Resour Invest Rep 86–4174Google Scholar
  3. Anderholm SK (2001) Mountain-front recharge along the eastern side of the Middle Rio Grande Basin, central New Mexico. US Geol Surv Water-Resour Invest Rep 00-4010Google Scholar
  4. Athy LF (1930) Density, porosity, and compaction of sedimentary rocks: Bull Am Assoc Petrol Geol 14:1–24Google Scholar
  5. Bachhuber FW (1992) A pre-late Wisconsin paleolimnologic record from the Estancia Valley, central New Mexico. In: Clark PU, Lea PD (eds) The last interglacial–glacial transition in North America. Geol Soc Am Spec Pap 270:289–307Google Scholar
  6. Bartolino JR, Cole JC (2002) Groundwater resources of the Middle Rio Grande Basin. US Geol Surv Circular 1222Google Scholar
  7. Bartolino JR, Niswonger RG (1999) Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. US Geol Surv Water Resour Investig Rep 99-4212Google Scholar
  8. Bexfield LM, Anderholm SK (2000) Predevelopment water-level map of the Santa Fe Group aquifer system in the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. US Geol Surv Water-Resour Invest Rep 00-4249Google Scholar
  9. Bexfield LM, Anderholm SK (2002) Spatial patterns and temporal variability in water quality from City of Albuquerque supply wells and piezometer nests, with implications for the ground-water flow system. US Geol Surv Water-Resour Investigat Rep 01-4244Google Scholar
  10. Bjorklund LJ, Maxwell BW (1961) Availability of ground water in the Albuquerque area, Bernalillo and Sandoval Counties, New Mexico. New Mexico State Eng Tech Rep 21Google Scholar
  11. Cole JC (2001) 3-D geologic modeling of regional hydrostratigraphic units in the Albuquerque segment of the Rio Grande rift. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488, pp 26–28Google Scholar
  12. Constantz J (1998) Measurements of tributary, inter-arroyo, and mountain-front recharge on the Santa Fe River, Bear Canyon, and Abo Arroyo, New Mexico. In: Slate JL (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Second Annual Workshop, Albuquerque, New Mexico, 10–11 February 1998. US Geol Surv Open-File Rep 98-337, pp 55–56Google Scholar
  13. Grauch VJS, Sawyer DA, Keller GR, Gillespie CL (2001) Contributions of gravity and aeromagnetic studies to improving the understanding of the subsurface hydrogeology, Middle Rio Grande Basin, New Mexico. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488, pp 3–4Google Scholar
  14. Haneberg WC (1995a) Steady-state groundwater flow across idealized faults. Water Resour Res 31:1815–1820CrossRefGoogle Scholar
  15. Haneberg WC (1995b) Depth-porosity relationships and virgin specific storage estimates for the upper Santa Fe Group aquifer system, central Albuquerque Basin, New Mexico. New Mex Geol 17:62–71Google Scholar
  16. Hawley JW, Haase CS (1992) Hydrogeologic framework of the northern Albuquerque Basin: Socorro. New Mex Bureau of Mines and Mineral Resources Open-File Rep 387Google Scholar
  17. Hill MC (1998) Methods and guidelines for effective model calibration. US Geol Surv Water-Resources Investig Rep 98-4005Google Scholar
  18. Johnson TM, DePaolo DJ (1996) Reaction-transport models for radiocarbon in groundwater: the effects of longitudinal dispersion and the use of Sr isotope ratios to correct for water-rock interaction. Water Resour Res 32:2203–2212CrossRefGoogle Scholar
  19. Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic Publishers, Amsterdam, pp 111–144Google Scholar
  20. Kernodle JM, Scott WB (1986) Three-dimensional model simulation of steady-state groundwater flow in the Albuquerque–Belen Basin, New Mexico. US Geol Survey Water-Resour Investig Rep 84-4353Google Scholar
  21. Kernodle JM, Miller RS, Scott WB (1987) Three-dimensional model simulation of transient groundwater flow in the Albuquerque–Belen Basin, New Mexico. US Geol Surv Water-Resour Invest Rep 86-4194Google Scholar
  22. Kernodle JM, McAda DP, Thorn CR (1995) Simulation of groundwater flow in the Albuquerque Basin, Central New Mexico 1901–1994, with projections to 2020. US Geol Surv Water-Resour Invest Rep 94-4251Google Scholar
  23. Logan LM (1990) Geochemistry of the Albuquerque municipal area, Albuquerque, New Mexico. MSc Thesis, New Mexico Institute of Mining and TechnologyGoogle Scholar
  24. McAda DP (1996) Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe aquifer system near Albuqueruque, central New Mexico. US Geol Surv Water Resour Investig Rep 96-4006Google Scholar
  25. McAda DP, Barroll P (2002) Simulation of ground-water flow in the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. US Geol Surv Water Resour Investig Rep 02-4200Google Scholar
  26. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference groundwater flow model. US Geol Surv Tech Water-Resour Invest, vol 6, ch A1Google Scholar
  27. Medina A, Carrera J (1996) Coupled estimation of flow and solute transport parameters. Water Resour Res 32:3063–3076CrossRefGoogle Scholar
  28. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004a) Geochemical characterization of groundwater flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resources Investig Rep 03-4131Google Scholar
  29. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 1. conceptualization of groundwater flow. Hydrogeol J DOI 10.1007/s10040-004-324-6 (this issue)Google Scholar
  30. Poeter EP, Hill MC (1998) Documentation of UCODE, a computer code for universal inverse modeling. US Geol Surv Water-Resour Investig Rep 98-4080Google Scholar
  31. Pollock DW (1994) User’s guide for MODPATH/MODPATH-PLOT, version 3: a particle tracking post-processing package for MODFLOW, the US Geological Survey finite-difference groundwater flow model. US Geol Surv Open-File Rep 94-464Google Scholar
  32. Rawling GC, Goodwin LB, Wilson JL (2001) Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology 29:43–46CrossRefGoogle Scholar
  33. Sanford WE (1997) Correcting for diffusion in Carbon-14 dating of ground water. Ground Water 35:357–361Google Scholar
  34. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2001) Estimation of hydrologic parameters for the ground-water model of the Middle Rio Grande Basin using carbon-14 and water-level data. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488, pp 4–6Google Scholar
  35. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004) Use of environmental tracers to estimate parameters for a predevelopment ground-water-flow model of the Middle Rio Grande Basin, New Mexico. US Geol Surv Water Resources Investig Rep 03-4286Google Scholar
  36. Stone BD, Allen BD (1998) The 98th Street core: key to analysis of Santa Fe Group stratigraphy and hydrogeology in the central Middle Rio Grande Basin. In: Slate JL (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Second Annual Workshop, Albuquerque, New Mexico, 10–11 February 1998. US Geol Surv Open-File Rep 98-337, pp 41–46Google Scholar
  37. Stone BD, Cole JC, Sawyer DA (2001) Regional stratigraphic framework of the three-dimensional geologic model of the Rio Grande rift. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488, pp 11–13Google Scholar
  38. Stonestrom DA, Akstin KC (1998) Environmental tracers of recharge at Abo Arroyo, Bear Canyon, and the Santa Fe River, Middle Rio Grande Basin, New Mexico. In Slate JL (ed) US Geological Survey Middle Rio Grande Basin Study: Proceedings of the Second Annual Workshop, Albuquerque, New Mexico, 10–11 February 1998. US Geol Survey Open-File Rep 98-337, pp 57–59Google Scholar
  39. Stuiver M., Reimer PJ, Bard E, Beck JW, Burr G, Hughen KA, Kromer B, McCormac FG, van der Plicht J, Spurk M (1998) INTCAL98 Radiocarbon age calibration, 24,000–0 cal b.p. Radiocarbon 40:1041Google Scholar
  40. Thorn CR, McAda DP, Kernodle JM (1993) Geohydrologic framework and hydrologic conditions in the Albuquerque Basin, central New Mexico. US Geol Surv Water-Resour Investig Rep 93-4149Google Scholar
  41. Tiedeman CR, Kernodle JM, McAda DP (1998) Application of nonlinear-regression methods to a groundwater flow model of the Albuquerque Basin, New Mexico. US Geol Surv Water-Resour Investig Rep 98-4172Google Scholar
  42. Titus FB (1963) Geology and groundwater conditions in eastern Valencia County, New Mexico. New Mex Bureau Mines Mineral Resour Groundwater Rep 7Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ward E. Sanford
    • 1
  • L. Niel Plummer
    • 1
  • Douglas P. McAda
    • 2
  • Laura M. Bexfield
    • 2
  • Scott K. Anderholm
    • 2
  1. 1.US Geological Survey431 National CenterRestonUSA
  2. 2.US Geological SurveyAlbuquerqueUSA

Personalised recommendations