Hydrogeology Journal

, Volume 12, Issue 4, pp 359–388

Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow

  • L. Niel Plummer
  • Laura M. Bexfield
  • Scott K. Anderholm
  • Ward E. Sanford
  • Eurybiades Busenberg
Paper

Abstract

Chemical and isotopic data for groundwater from throughout the Middle Rio Grande Basin, central New Mexico, USA, were used to identify and map groundwater flow from 12 sources of water to the basin, evaluate radiocarbon ages, and refine the conceptual model of the Santa Fe Group aquifer system.

Hydrochemical zones, representing groundwater flow over thousands to tens of thousands of years, can be traced over large distances through the primarily siliciclastic aquifer system. The locations of the hydrochemical zones mostly reflect the “modern” predevelopment hydraulic-head distribution, but are inconsistent with a trough in predevelopment water levels in the west-central part of the basin, indicating that this trough is a transient rather than a long-term feature of the aquifer system. Radiocarbon ages adjusted for geochemical reactions, mixing, and evapotranspiration/dilution processes in the aquifer system were nearly identical to the unadjusted radiocarbon ages, and ranged from modern to more than 30 ka. Age gradients from piezometer nests ranged from 0.1 to 2 year cm–1 and indicate a recharge rate of about 3 cm year–1 for recharge along the eastern mountain front and infiltration from the Rio Grande near Albuquerque. There has been appreciably less recharge along the eastern mountain front north and south of Albuquerque.

Keywords

Arid regions Hydrochemistry New Mexico Radiocarbon age Stable isotopes 

Résumé

Des données sur les éléments chimiques et les isotopes présents dans l’eau souterraine prélevée à divers endroits dans le bassin moyen du Rio Grande, au centre du Nouveau-Mexique (É-U), ont permis de déterminer l’existence et l’étendue de douze sources d’eau régionales dans le bassin, d’évaluer les âges radiocarbones et de raffiner le modèle conceptuel du système aquifère du groupe de Santa Fe. Des zones hydro-chimiques qui représentent l’écoulement de l’eau souterraine depuis des dizaines de milliers d’années peuvent être suivies sur de longues distances à travers l’aquifère principalement siliclastique. La position des zones hydro-chimiques reflète principalement la distribution moderne des charges hydrauliques mais est incohérente avec une dépression dans le niveau d’eau dans la partie centre-ouest du bassin, ce qui indique que cette dépression est un élément transitoire du système aquifère plutôt qu’un élément à long terme. Les âges radiocarbones ajustés aux réactions géochimiques et aux processus de mélange et d’évapotranspiration/dilution qui ont lieu dans l’aquifère sont presque identiques aux âges non ajustés et varient de la période moderne jusqu’à 30 ka. Les gradients d’âge établis à partir des nids de piézomètres s’étendent de 0.1 à 2 a cm–1 et suggèrent un taux de recharge d’environ 3 cm a–1 le long du front des montagnes à l’est et pour l’infiltration provenant du Rio Grande près d’Albuquerque. Il y a eu substantiellement moins de recharge le long du front des montagnes à l’est, au nord et au sud d’Albuquerque.

Resumen

Se utilizaron datos químicos e isotópicos de agua subterránea a lo largo de la cuenca central del río Grande, Nuevo México, EEUU, para identificar y mapear el flujo de agua subterránea de 12 fuentes de agua a la cuenca para evaluar edades por medio de radio carbon y para refinar el modelo conceptual del sistema acuífero del Grupo Santa Fé.

Se puede establecer zonas hidrotérmicas que representan el flujo de agua subterránea a lo largo de miles a miles de decenas de años en grandes distancias a través del sistema acuífero principalmente siliclástico. Las ubicaciones de las zonas hidroquímicas mayormente reflejan la distribucion de la cabeza hidráulica pre-desarollo moderna pero son inconsistentes con una depresión en los niveles de agua pre-desarollo en la zona central oeste de la cuenca. Esto indica que esta depresión es un rasgo transitorio y no un rasgo de largo plazo del sistema acuífero. Las edades de radio carbon ajustadas para los procesos de reaciones geoquímicas, de mezclado y de evapotranspiración-dilución son casi idénticas a los edades de radio carbon no ajustadas oscilan en un rango desde la modernidad a 30 mil años. Las gradientes de edad de nidos de piezometros van de 0.1 a 2 años cm–1 e indican un sitio de recarga de aproximadamente 3 cm/yr para la recarga a lo largo del frente montañoso oriental e infiltración del río Grande cerca de Albuquerque. Se aprecia una recarga menor a lo largo del frente oriental de montañas al norte y al sur de Albuquerque.

References

  1. Anderholm SK (1985) Clay-size fraction and powdered whole-rock X-ray analyses of alluvial-basin deposits in central and southern New Mexico. US Geol Surv Open-File Rep 85-173:18Google Scholar
  2. Anderholm SK (1988) Ground-water geochemistry of the Albuquerque–Belen Basin, central New Mexico. US Geol Surv Water-Resources Investigations Rep 86-4094:110Google Scholar
  3. Anderholm SK (1997) Water-quality assessment of the Rio Grande valley, Colorado, New Mexico, and Texas — shallow ground-water quality and land use in the Albuquerque area, central New Mexico 1993. US Geol Surv Water-Resources Investigations Rep 97-4067:73Google Scholar
  4. Anderholm SK (2001) Mountain-front recharge along the east side of the Albuquerque Basin, central New Mexico (revised). US Geol Surv Water-Resources Investigations Rep 00-4010:36Google Scholar
  5. Bard E, Hamelin B, Fairbanks R, Zindler A (1990) Calibration of the 14C timescale over the past 30,000 yr using mass spectrometric U–Th ages from Barbados corals. Nature 345:405–410Google Scholar
  6. Bard E, Arnold M, Fairbanks RG, Hamelin B (1993) 230Th–234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35:191–199Google Scholar
  7. Bard E, Arnold M, Hamelin B, Tisnerat-Laborde N, Cabioch G (1998) Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40:1085–1092Google Scholar
  8. Bartlein PJ, Edwards ME, Shafer SL, Barker ED Jr (1995) Calibration of radiocarbon ages and the interpretation of paleoenvironmental records. Quaternary Res 44:417–424CrossRefGoogle Scholar
  9. Bartolino JR, Cole JC (2002) Ground-water resources of the Middle Rio Grande Basin, New Mexico. US Geol Surv, Circular 1222:132Google Scholar
  10. Bartolino JR, Niswonger RG, III (1999) Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, central New Mexico. US Geol Surv Water-Resources Investigations Rep 99-4212:34Google Scholar
  11. Bexfield LM, Anderholm SK (1997) Water-quality assessment of the Rio Grande Valley, New Mexico, and Texas — ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas 1995. US Geol Surv Water-Resources Investigations Rep 96-4249:93Google Scholar
  12. Bexfield LM, Anderholm SK (2000) Predevelopment water-level map of the Santa Fe Group aquifer system in the Middle Rio Grande Basin between Cochiti Lake and San Acacia, New Mexico. US Geol Surv Water-Resources Investigations Rep 00-4249:1sheetGoogle Scholar
  13. Bexfield LM, Anderholm SK (2002) Spatial patterns and temporal variability in water quality from City of Albuquerque supply wells and piezometer nests, with implications for the ground-water flow system. US Geol Surv Water-Resources Investigations Rep 01-4244:101Google Scholar
  14. Bexfield LM, Lindberg WE, Anderholm SK (1999) Summary of water-quality data for City of Albuquerque drinking-water supply wells 1988–97. US Geol Surv Open-File Rep 99-195:138Google Scholar
  15. Bjorklund LJ, Maxwell BW (1961) Availability of ground water in the Albuquerque area, Bernalillo and Sandoval Counties, New Mexico. New Mexico State Engineer Tech Rep 21:117Google Scholar
  16. Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5–41CrossRefGoogle Scholar
  17. Connell SD (2001) Stratigraphy of the Albuquerque Basin, Rio Grande Rift, central New Mexico: a progress report. In: Connell SD, Lucas SG, Love DW (eds) Stratigraphy and tectonic development of the Albuquerque Basin, central Rio Grande Rift. New Mexico Bureau of Mines and Mineral Resources Open-File Report 454B, Socorro, NM, pp A1-A27Google Scholar
  18. Connell SD, Allen BD, Hawley JW (1998) Subsurface stratigraphy of the Santa Fe Group from borehole geophysical logs, Albuquerque area, New Mexico. New Mexico Geology 17:79–87Google Scholar
  19. Connin SL, Betancourt J, Quade J (1998) Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quaternary Res 50:179–193CrossRefGoogle Scholar
  20. Constantz J, Thomas CL (1996) The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos. Water Resour Res 32:3597–3602CrossRefGoogle Scholar
  21. Epstein HE, Lauenroth WK, Burke IC, Coffin DP (1997) Productivity patterns of C3 and C4 functional types in the US Great Plains. Ecology 78:722–731Google Scholar
  22. Flint AF, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarsson GS (2002) Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods. Hydrogeol J 10:180–204CrossRefGoogle Scholar
  23. Grauch VJS, Gillespie CL, Keller GR (1999) Discussion of new gravity maps for the Albuquerque Basin area. In: Pazzaglia FJ, Lucas SG (eds) Albuquerque geology. New Mexico Geological Society Fiftieth Annual Field Conference, 22–25 September 1999. New Mexico Geological Society, pp 119–124Google Scholar
  24. Grauch VJS, Sawyer DA, Keller GR, Gillespie CL (2001) Contributions of gravity and aeromagnetic studies to improving the understanding of subsurface hydrogeology, Middle Rio Grande Basin, New Mexico. In: Cole JC (ed) US geological survey middle Rio Grande Basin study. Proceedings of the fourth annual workshop, Albuquerque, New Mexico, 15–16 February 2000, US Geol Surv Open-File Rep 00-488:3–4Google Scholar
  25. Grover HD, Musick HB (1990) Shrubland encroachment in southern New Mexico, USA: an analysis of desertification processes in the American southwest. Climatic Change 17:305–330Google Scholar
  26. Haneberg WC, Hawley JW (eds) (1996) Characterization of hydrogeologic units in the Northern Albuquerque Basin, New Mexico. In: Hawley JW, Haneberg WC, Whitworth TM (compilers) Hydrogeologic investigations in the Albuquerque Basin, central New Mexico 1992–1995. New Mexico Bureau of Mines and Mineral Resources Open-File Report 402, Socorro, NM, section 402CGoogle Scholar
  27. Hawley JW (1996a) Hydrologic setting of the Albuquerque Basin area. In: Hawley JW, Haneberg WC, Whitworth TM (compilers) Hydrogeologic investigations in the Albuquerque Basin, central New Mexico 1992–1995. New Mexico Bureau of Mines and Mineral Resources Open-File Report 402, Socorro, NM, section 402BGoogle Scholar
  28. Hawley JW (1996b) Hydrogeologic framework of potential recharge areas in the Albuquerque Basin, central Valencia County, New Mexico. In: Hawley JW, Whitworth TM (eds) Hydrogeology of potential recharge areas for the basin- and valley-fill aquifer systems, and hydrogeochemical modelling of proposed artificial recharge of the upper Santa Fe aquifer, northern Albuquerque Basin, New Mexico. New Mexico Bureau of Geology and Mineral Resources Open-File Report 402-D, 608 ppGoogle Scholar
  29. Hawley JW, Haase CS (1992) Hydrogeologic framework of the northern Albuquerque Basin. Open-File Report 387:74 New Mexico Bureau of Mines and Mineral Resources, Socorro, NMGoogle Scholar
  30. Hawley JW, Haase CS, Lozinsky RP (1995) An underground view of the Albuquerque Basin. In: Ortega-Klett CT (ed) The water future of Albuquerque and the Middle Rio Grande Basin. Proceedings of the 29th Annual New Mexico Water Conference, 3–4 November 1994. New Mexico Water Resources Research Institute WRRI Report No 290, Las Cruces, NM, pp 34–55Google Scholar
  31. Helsel DR, Hirsch RM (1995) Statistical methods in water resources. Elsevier Science BV, New YorkGoogle Scholar
  32. Heywood CE (1992) Isostatic residual gravity anomalies of New Mexico. US Geol Surv Water-Resources Investigations Rep 91-4065:27Google Scholar
  33. Huang Y, Street-Perrott FA, Metcalf SE, Brenner M, Moreland M, Freeman KH (2001) Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293:1647–1651CrossRefPubMedGoogle Scholar
  34. Kalin RM (2000) Radiocarbon dating of groundwater systems. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, pp 111–144Google Scholar
  35. Kelley VC (1977) Geology of Albuquerque Basin, New Mexico. New Mexico Bureau of Mines and Mineral Resources Memoir 33, Socorro, NMGoogle Scholar
  36. Kernodle JM (1998) Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901–95, with projections to 2020. US Geol Surv Open-File Rep 96-209:54Google Scholar
  37. Kernodle JM, Miller RS, Scott WB (1987) Three-dimensional model simulation of transient ground-water flow in the Albuquerque–Belen Basin, New Mexico. US Geol Surv Water-Resources Investigations Rep 86-4194:58Google Scholar
  38. Kernodle JM, McAda DP, Thorn CR (1995) Simulation of ground-water flow in the Albuquerque Basin, central New Mexico 1901–1994, with projections to 2020. US Geol Surv Water-Resources Investigations Rep 94-4251:114Google Scholar
  39. Kitagawa H, van der Plicht J (1998a) Atmospheric radiocarbon calibration to 45,000 yr b.p.: Late glacial fluctuations and cosmogenic isotope production. Science 279:1187–1190CrossRefPubMedGoogle Scholar
  40. Kitagawa H, van der Plicht J (1998b) A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40:505–515Google Scholar
  41. Kitagawa H, van der Plicht J (2000) Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42:369–380Google Scholar
  42. Liu B, Phillips FM, Campbell AR (1996) Stable carbon and oxygen isotopes in pedogenic carbonates, Ajo Mountains, southern Arizona: implications for paleoenvironmental change. Palaeogeogr Palaeoclimatol Palaeoecol 124:233–246CrossRefGoogle Scholar
  43. Logan LM (1990) Geochemistry of the Albuquerque municipal area, Albuquerque, New Mexico. MSc Thesis, New Mexico Institute of Mining and Technology, Socorro, NMGoogle Scholar
  44. Lozinsky RP (1988) Stratigraphy, sedimentology, and sand petrology of the Santa Fe Group and pre-Santa Fe Tertiary deposits in the Albuquerque Basin, central New Mexico. New Mexico Institute of Mining and Technology, PhD Thesis, Socorro, NMGoogle Scholar
  45. McAda DP (1996) Plan of study to quantify the hydrologic relations between the Rio Grande and the Santa Fe Group aquifer system near Albuquerque, central New Mexico. US Geol Surv Water-Resources Investigations Rep 96-4006:58Google Scholar
  46. McAda DP, Barroll P (2002) Simulation of ground-water flow in the Middle Rio Grande Basin between Cochiti and San Acacia, New Mexico. US Geol Surv Water-Resources Investigations Rep 02-4200:81Google Scholar
  47. McPherson GR, Boutton TW, Midwood AJ (1993) Stable carbon isotope analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA. Oecologia 93:95–101Google Scholar
  48. Minor SA, Shock NA (1998) Characterizing faults in the Middle Rio Grande Basin: results from the Cochiti and Santo Domingo Pueblos. US Geol Surv Open-File Rep 98-337:22–23Google Scholar
  49. Monger HC, Cole DR, Gish JW, Giordano TH (1998) Stable carbon and oxygen isotopes in Quaternary soil carbonates as indicators of ecogeomorphic changes in the northern Chihuahuan Desert, USA. Geoderma 82:137–172CrossRefGoogle Scholar
  50. Moore D (1999) Precipitation chemistry data on the Sevileta National Wildlife Refuge, 1989–1995: Sevilleta LTER Database, accessed March 2, 1999, at http://sevilleta.unm.edu/research/local/nutrient/precipitation/#data
  51. Mozley PS, Goodwin LB (1995) Patterns of cementation along a Cenozoic normal fault — a record of paleoflow orientations. Geology 23:539–542CrossRefGoogle Scholar
  52. Mozley P, Beckner J, Whitworth TM (1995) Spatial distribution of calcite cement in the Santa Fe Group, Albuquerque Basin, NM — implications for ground-water resources. New Mexico Geol 17:88–93Google Scholar
  53. Phillips FM, Tansey MK, Peeters LA (1989) An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: carbon-14 dating as a basis for numerical flow modeling. Water Resour Res 25:2259–2273Google Scholar
  54. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE (2001) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study. Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488:7–10Google Scholar
  55. Plummer LN, Bexfield LM, Anderholm SK, Sanford WE, Busenberg E (2004) Geochemical characterization of ground-water flow in the Santa Fe Group aquifer system, Middle Rio Grande Basin, New Mexico. US Geol Surv Water-Resources Investigations Rep 03-4131:395 (in press)Google Scholar
  56. Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code (NETPATH) for modeling NET geochemical reactions along a Flow PATH. Version 2.0. US Geol Surv Water-Resources Investigations Rep 94-4169:130Google Scholar
  57. Reeder HO, Bjorklund LJ, Dinwiddie GA (1967) Quantitative analysis of water resources in the Albuquerque area, New Mexico? Computed effects on the Rio Grande of pumpage of ground water, 1960–2000. New Mexico State Engineer Technical Report 33:34Google Scholar
  58. Russell LR, Snelson S (1990) Structural style and tectonic evolution of the Albuquerque Basin segment of the Rio Grande Rift. In: Pinet B, Bois C (eds) The potential of deep seismic profiling for hydrocarbon exploration. Proc French Petroleum Inst Res Conf, Editions Technip, Paris, pp 175–207Google Scholar
  59. Sanford WE, Plummer LN, Bexfield LM (1998) Using environmental tracer data to improve the US Geological Survey MODFLOW model of the Middle Rio Grande Basin. In: US Geological Survey Middle Rio Grande Basin Study: Second Annual Workshop, Albuquerque, New Mexico, Feb. 1998. US Geol Surv Open-File Rep 98-337:13–14Google Scholar
  60. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2001) Estimation of hydrologic parameters for the ground-water model of the Middle Rio Grande Basin using carbon-14 and water-level data. In: Cole JC (ed) US Geological Survey Middle Rio Grande Basin Study. Proceedings of the Fourth Annual Workshop, Albuquerque, New Mexico, 15–16 February 2000. US Geol Surv Open-File Rep 00-488:4–6Google Scholar
  61. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004a) Use of environmental tracers to estimate parameters for a predevelopment-ground-water-flow model of the Middle Rio Grande Basin, New Mexico. US Geol Surv Water-Resources Investigations Rep. 03-4286 (in press)Google Scholar
  62. Sanford WE, Plummer LN, McAda DP, Bexfield LM, Anderholm SK (2004b) Hydrochemical tracers in the Middle Rio Grande Basin, USA: 2. Calibration of a groundwater model. Hydrogeol J DOI: s10040-004-0326-4 (this volume)
  63. Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39CrossRefGoogle Scholar
  64. Stone BD, Allen BD, Mikolas M, Hawley JW, Haneberg WC, Johnson PS, Allred B, Thorn CR (1998) Preliminary lithostratigraphy, interpreted geophysical logs, and hydrogeologic characteristics of the 98th Street core hole, Albuquerque, New Mexico. US Geol Surv Open-File Rep 98-210:82Google Scholar
  65. Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 8:534–540Google Scholar
  66. Stuiver M, Kromer B, Becker B, Ferguson CW (1986) Radiocarbon age calibration back to 13,300 years b.p. and the 14C age matching of the German oak and US bristlecone pine chronologies. Radiocarbon 28:980–021Google Scholar
  67. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal b.p. Radiocarbon 40:1041–1083Google Scholar
  68. Thomas CL (1995) Infiltration and quality of water for two arroyo channels, Albuquerque, New Mexico 1988–92. US Geol Surv Water-Resources Investigations Rep 95-4070:63Google Scholar
  69. Thorn CR, McAda DP, Kernodle JM (1993) Geohydrologic framework and hydrologic conditions in the Albuquerque Basin, central New Mexico. US Geol Surv Water-Resources Investigations Rep 93-4149:106Google Scholar
  70. Tiedeman CR, Kernodle JM, McAda DP (1998) Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico. US Geol Surv Water-Resources Investigations Rep 98-4172:90Google Scholar
  71. Titus FB (1961) Ground-water geology of the Rio Grande trough in north-central New Mexico, with sections on the Jemez Caldera and Lucero Uplift. In: Northrop SA (ed.) Guidebook of the Albuquerque country. New Mexico Geological Society, 12th Field Conference, pp 186–192Google Scholar
  72. Titus FB (1963) Geology and ground-water conditions in eastern Valencia County, New Mexico. New Mexico Bureau of Mines and Mineral Resources Ground-Water Report 7, Socorro, NMGoogle Scholar
  73. Wigley TML, Plummer LN, Pearson FJ Jr (1978) Mass transfer and carbon isotope evolution in natural water systems. Geochim Cosmochim Acta 42:1117–1139CrossRefGoogle Scholar
  74. Wigley TML, Plummer LN, Pearons FJ Jr (1979) Errata. Geochim Cosmochim Acta 43:1395CrossRefGoogle Scholar
  75. Yapp CJ (1985) D/H variations of meteoric waters in Albuquerque, New Mexico, USA. J Hydrol 76:63–84CrossRefGoogle Scholar
  76. Zhu C, Winterle JR, Love EI (2003) Late Pleistocene and Holocene groundwater recharge from the chloride mass balance method and chlorine-36 data. Water Resour Res (39)7:1182, DOI: 10.1029/2003WR001987

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. Niel Plummer
    • 1
  • Laura M. Bexfield
    • 2
  • Scott K. Anderholm
    • 2
  • Ward E. Sanford
    • 1
  • Eurybiades Busenberg
    • 1
  1. 1.US Geological SurveyRestonUSA
  2. 2.US Geological SurveyAlbuquerqueUSA

Personalised recommendations