Hydrogeology Journal

, Volume 12, Issue 2, pp 135–143 | Cite as

Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA

Paper

Abstract

Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quickflow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm.

Keywords

Karst Carbonate rocks Recharge/water budget Hydrochemistry 

Résumé

L’enregistrement en continu du débit, de la conductivité et de la température de l’eau a été réalisé au cours d’une série de crues à deux sources émergeant de calcaires, à Fort Campbell (Kentucky occidental, Tennessee, États-Unis). Des échantillons d’eau, prélevés à de courts pas de temps lors de ces crues, ont été analysés pour le calcium, le magnésium, les bicarbonates, le carbone organique total et le pH. Les chimiogrammes de calcium, d’indice de saturation de la calcite et de la pression partielle en CO2 ont été superposés aux hydrogrammes de crue. La concentration en calcium et la conductivité de l’eau se suivent bien et passent par un minimum correspondant au pic de l’hydrogramme ou légèrement retardé. La pression partielle en CO2 continue de croître au cours de la récession de l’hydrogramme de même que l’indice de saturation de la calcite décroît. Ces résultats sont interprétés comme étant dus à l’infiltration dispersée au travers de sols riches en CO2, décalée par rapport à l’arrivée de l’écoulement rapide provenant de la recharge, à partir d’une perte, de l’écoulement de crue vers les sources. Les hydrogrammes de sources karstiques ne reflètent pas seulement le mélange variable de l’écoulement de base et de l’écoulement de crue, mais également un changement d’origine de l’eau de la recharge au cours de l’épisode de crue.

Resumen

Se ha registrado en continuo la descarga, conductancia específica y temperatura de una serie de episodios de tormenta en dos manantiales en calizas ubicados en Fort Campbell, en el oeste de Kentucky/Tennessee (Estados Unidos de América). Se ha analizado muestras de agua recogidas en breves intervalos de tiempo durante los episodios de tormenta, determinando el calcio, magnesio, bicarbonato, carbono orgánico total y pH. Se ha superpuesto quimiogramas de calcio, índice de saturación en calcita y presión parcial de dióxido de carbono en los hidrogramas de las tormentas. La concentración de calcio y la conductancia específica se comportan de forma similar y presentan un mínimo que coincide también con un pico del hidrograma o que se retrasa ligeramente con respecto a él. La presión de dióxido de carbono sigue aumentando en la rama de recesión del hidrograma y, como consecuencia, disminuye el índice de saturación de la rama de recesión del hidrograma. Se interpreta que estos resultados son debidos a la infiltración dispersa a través de suelos enriquecidos en dióxido de carbono que retrasan el flujo rápido desde la recarga en los sumideros hasta su afloramiento en los manantiales. Los hidrogramas en manantiales kársticos reflejan no sólo la mezcla cambiante del flujo de base y el de tormenta, sino también el cambio en el origen del agua de recarga durante el curso de la tormenta.

References

  1. Arthur D. Little Inc. (1997) Hydrogeologic Report. Cambridge, MA, Prepared for the US Army Environmental CenterGoogle Scholar
  2. Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset. J Hydrol 35:93–110CrossRefGoogle Scholar
  3. Desmarais K, Rojstaczer S (2002) Inferring source waters from measurements of carbonate spring response to storms. J Hydrol 260:102–117CrossRefGoogle Scholar
  4. Drake JJ, Harmon RS (1973) Hydrochemical environments of carbonate terrains. Water Resour Res 9:949–957Google Scholar
  5. Dreiss SJ (1989) Regional scale transport in a karst aquifer 1. Component separation of carbonate spring waters. J Hydrol 23:117–125Google Scholar
  6. Dreybrodt W (1990) The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J Geology 98:639–655Google Scholar
  7. Field MS (1993) Karst hydrology and chemical contamination. J Environ Syst 22:1–26Google Scholar
  8. Ford D, Williams P (1989) Karst geomorphology and hydrology. Chapman & Hall, LondonGoogle Scholar
  9. Gustafsson JP (2000) Visual MINTEQ. Stockholm, Sweden, Kungl Tekniska Hogskolan (KTH), Div. of Land and Water ResourcesGoogle Scholar
  10. Hess JW, White WB (1993) Groundwater geochemistry of the carbonate karst aquifer, south-central Kentucky, USA. Appl Geochem 8:189–204Google Scholar
  11. Hileman GE, Ladd DE (1998) Potentiometric surface of the bedrock aquifer in the Campbell Army Airfield area, Kentucky and Tennessee, September 1997. Nashville, Tennessee, US Geological SurveyGoogle Scholar
  12. Idstein PJ, Ewers RO (1991) Deducing karst aquifer recharge, storage and transfer mechanisms through continuous electronic monitoring—a confirmation with tracers. Third Conference on Hydrogeology, Ecology, Monitoring and Management of Ground Water in Karst Terranes, Nashville, TN, pp 431–444Google Scholar
  13. Idstein PJ, Ewers RO (2003) Dye Tracing Studies Hydro 2001, Related to Chrome Plating SWMU 140, and the Campbell Army Airfield SWMU 41, AOC-A, and AOC-D, Fort Campbell, Kentucky. Richmond KY, Ewers Water ConsultantsGoogle Scholar
  14. Lakey B, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32:721–731Google Scholar
  15. Lee ES, Krothe NC (2001) A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143CrossRefGoogle Scholar
  16. Palmer AN (1991) Origin and morphology of limestone caves. GSA Bull 103:1–21CrossRefGoogle Scholar
  17. Quinlan JF (1989) Ground-water monitoring in karst terranes: recommended protocols and implicit assumptions. Las Vegas, Nevada, US Environmental Protection AgencyGoogle Scholar
  18. Ray JA, O’Dell PW (1993) DIVERSITY: a new method for evaluating sensitivity of ground water to contamination. Environ Geol 22:345–352Google Scholar
  19. Scanlon BR, Thrailkill J (1987) Chemical similarities among physically distinct spring types in a karst terrain. J Hydrol 89:259–279Google Scholar
  20. Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128CrossRefGoogle Scholar
  21. Shuster ET, White WB (1972) Source areas and climatic effects in carbonate groundwaters determined by saturation indices and carbon dioxide pressures. Water Resour Res 8:1067–1073Google Scholar
  22. Smart PL, Hobbs HO (1986) Characterization of carbonate aquifers: a conceptual base. Conference on Environmental Problems in Karst Terranes and Their Solutions, October 28–30, 1986, Bowling Green, Kentucky, National Water Well Association pp 1–14Google Scholar
  23. Talarovich SG, Krothe NC (1998) Three-component storm hydrograph separation of a karst spring contaminated by polychlorinated biphenyls in central Indiana. Environ Geosci 5:162–176CrossRefGoogle Scholar
  24. USEPA (2000) SW-846 Test methods for evaluating solid waste physical/chemical methodsGoogle Scholar
  25. Vesper DJ (2002) Transport and storage of trace metals in a karst aquifer: an example from Fort Campbell, Kentucky. PhD Dissertation, Pennsylvania State University, University Park, PAGoogle Scholar
  26. Vesper DJ, White WB (2003) Metal transport to karst springs during storm flow: an example from Fort Campbell, Kentucky/Tennessee, USA. J Hydrol 276:20–36CrossRefGoogle Scholar
  27. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  28. White WB (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in karst terrains. Environ Geol 30:46–58CrossRefGoogle Scholar
  29. White WB (1999) Conceptual models for karstic aquifers. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling. Karst Waters Institute, Charlottesville, Virginia. Spec Publ 5, pp 11–16Google Scholar
  30. Worthington SRH, Davies GJ, Ford DC (2000) Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Sasowsky ID, Wicks CM (eds) Groundwater flow and contaminant transport in carbonate aquifers. A.A. Balkema, Rotterdam, pp 113–128Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Geology and Geography and the West Virginia Water Research InstituteWest Virginia UniversityMorgantownUSA
  2. 2.Department of Geosciences and Materials Research Institute BuildingPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations