Advertisement

Hydrogeology Journal

, Volume 12, Issue 2, pp 123–134 | Cite as

Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium

  • Serge Brouyère
  • Guy Carabin
  • Alain Dassargues
Paper

Abstract

An integrated hydrological model (MOHISE) was developed in order to study the impact of climate change on the hydrological cycle in representative water basins in Belgium. This model considers most hydrological processes in a physically consistent way, more particularly groundwater flows which are modelled using a spatially distributed, finite-element approach. Thanks to this accurate numerical tool, after detailed calibration and validation, quantitative interpretations can be drawn from the groundwater model results. Considering IPCC climate change scenarios, the integrated approach was applied to evaluate the impact of climate change on the water cycle in the Geer basin in Belgium. The groundwater model is described in detail, and results are discussed in terms of climate change impact on the evolution of groundwater levels and groundwater reserves. From the modelling application on the Geer basin, it appears that, on a pluri-annual basis, most tested scenarios predict a decrease in groundwater levels and reserves in relation to variations in climatic conditions. However, for this aquifer, the tested scenarios show no enhancement of the seasonal changes in groundwater levels.

Keywords

Groundwater Level Chalk Groundwater Resource Climate Change Scenario Climatic Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Un modèle hydrologique intégré (MOHISE) a été développé afin d’étudier l’impact du changement climatique sur le cycle hydrologique de bassins versants représentatifs de Belgique. Ce modèle prend en compte tous les processus hydrologiques d’une manière physiquement consistante, plus particulièrement les écoulements souterrains qui sont modélisés par une approche spatialement distribuée aux éléments finis. Grâce à cet outil numérique précis, après une calibration et une validation détaillées, des interprétations quantitatives peuvent être réalisées à partir des résultats du modèle de nappe. Considérant des scénarios de changements climatiques de l’IPCC, l’approche intégrée a été appliquée pour évaluer l’impact du changement climatique sur le cycle de l’eau du bassin du Geer en Belgique. Le modèle de nappe est décrit en détail et les résultats sont discutés en terme d’impact du changement climatique sur l’évolution des réserves souterraines. Les premiers résultats indiquent que des déficits d’eau souterraine peuvent apparaître dans le futur en Belgique.

Resumen

Se ha desarrollado un modelo hidrológico integrado (MOHISE) para estudiar el impacto del cambio climático en el ciclo hidrológico de cuencas representativas en Bélgica. Este modelo considera todos los procesos hidrológicos de forma coherente, especialmente en relación con los flujos de aguas subterráneas, que son modelados por medio de un enfoque de elementos finitos espacialmente distribuidos. Gracias a esta herramienta numérica precisa, y tras una calibración y validación detalladas, se puede obtener interpretaciones cuantitativas de los resultados del modelo del acuífero. Considerando escenarios de cambio climático IPCC, se ha aplicado el enfoque integrado a la evaluación del impacto de dicho cambio climático en el ciclo hidrológico de la cuenca del Geer. Se describe los detalles y resultados del modelo de las aguas subterráneas en términos del impacto del cambio climático en la evolución de las reservas de los acuíferos. Los resultados preliminares indican que es posible esperar déficits de aguas subterráneas en un futuro en Bélgica.

Notes

Acknowledgement

This study corresponds to a groundwater part of the project ‘Integrated Modelling of the Hydrological Cycle in Relation to Global Climate Change’ (CG/DD/08) supported by the Prime Minister’s Office—Federal Office for Scientific, Technical and Cultural Affairs of Belgium in the scope of the general program ‘Global Change Sustainable Development’. The authors would like to thank the other teams involved in the project for their fruitful cooperation, Jean Houard who helped to improve the quality of the English of the manuscript, and Perry Olcott, Ian Holman and an anonymous reviewer whose comments helped to improve the quality and the content of the manuscript.

References

  1. Arnell N (1998) Climate change and water resources in Britain. Climatic Change 39(1):83–110CrossRefGoogle Scholar
  2. Arnell N (2002) Hydrology and global environmental change. Prentice Hall, London, 346 pGoogle Scholar
  3. Beeton AM (2002) Large freshwater lakes: present state, trends, and future. Environ Conserv 29(1):21–38CrossRefGoogle Scholar
  4. Brouyère S (2001) Etude et modélisation du transport et du piégeage des solutés en milieu variablement saturé (Study and modelling of transport and retardation of solutes in variably saturated media). PhD Thesis, University of Liège, 572 pGoogle Scholar
  5. Carabin G, Dassargues A (1999) Modeling groundwater with ocean and river interaction. Water Resources Res 35(8):2347–2358Google Scholar
  6. Carabin G, Dassargues A (2000) Coupling of parallel river and groundwater models to simulate dynamic groundwater boundary conditions. In: Bentley LR, Sykes JF, Brebbia CA, Gray WG, Pinder GF (eds) Proc Computational Methods in Water Resources 2000. Balkema, Rotterdam, vol 2, pp 1107–1113Google Scholar
  7. Dassargues A, Monjoie A (1993) The chalk in Belgium. In: Downing RA, Price M, Jones GP (eds) The hydrogeology of the chalk of north-west Europe. Clarendon Press, Oxford, UK, pp 153–269Google Scholar
  8. Dassargues A, Maréchal JC, Carabin G, Sels O (1999) On the necessity to use three-dimensional groundwater models for describing impact of drought conditions on streamflow regimes. In: Hydrological extremes: understanding, predicting, mitigating. Proc IUGG 99 Symp HS1, July 1999, Birmingham. IAHS Publ 255:165–170Google Scholar
  9. De Wit MJM, Warmerdam PMM, Torfs PJJF, Uijlenhoet R, Roulin E, Cheymol A, van Deursen WPA, van Walsum PEV, Ververs M, Kwadijk JCJ, Buiteveld H (2001) Effect of climate change on the hydrology of the river Meuse. Wageningen University, Environmental Sciences, Water Resources Rep 108, 134 pGoogle Scholar
  10. Eheart JW, Tornil DW (1999) Low-flow frequency exacerbation by irrigation withdrawal in the agricultural Midwest under various climate change scenarios. Water Resources Res 35(7):2237–2246CrossRefGoogle Scholar
  11. Everbecq E, Gosselain V, Viroux L, Descy J-P (2001) POTAMON: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Res 35(4):901–912CrossRefPubMedGoogle Scholar
  12. Feddema JJ, Freire S (2001) Soil degradation, global warming and climate impacts. Climate Res 17(2):209–216Google Scholar
  13. Gellens D, Roulin E (1998) Streamflow response of Belgian catchments to IPCC climate change scenarios. J Hydrol 210:242–258CrossRefGoogle Scholar
  14. Gogu RC (2000) Advances in groundwater protection strategy using vulnerability mapping and hydrogeological GIS databases. PhD Thesis, University of Liege, Belgium, 152 pGoogle Scholar
  15. Gogu R, Carabin G, Hallet V, Peters V, Dassargues A (2001) GIS-based hydrogeological databases and groundwater modelling. Hydrogeol J 9:555–569CrossRefGoogle Scholar
  16. Hallet V (1999) Etude de la contamination de la nappe aquifère de Hesbaye par les nitrates: hydrogéologie, hydrochimie et modélisation mathématique des écoulements et du transport en milieu saturé (Nitrate contamination of the Hesbaye chalky aquifer in Belgium: hydrogeology, hydrochemistry and transport modelling). PhD Thesis, University of Liège, 361 pGoogle Scholar
  17. IPCC (2001) Impacts, adaptation and vulnerability. Contribution of the working group II to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC), edited by McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS. Cambridge University Press, UK, 1000 pGoogle Scholar
  18. Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H (1996) Global warming and the hydrological cycle. J Hydrol 174:83–127CrossRefGoogle Scholar
  19. Loaiciga HA, Maidment DR, Valdes JB (2000) Climate-change impacts in a regional karst aquifer, Texas, USA. J Hydrol 227:173–194CrossRefGoogle Scholar
  20. Menzel L, Bürger G (2002) Climate change scenarios and runoff response in the Mulde catchment (southern Elbe, Germany). J Hydrol 267:53–64CrossRefGoogle Scholar
  21. Monjoie A (1967) Observations nouvelles sur la nappe aquifère de la craie en Hesbaye (Belgique) (New observations about the chalky Hesbaye aquifer in Belgium). Mém Assoc Int Hydrogéol (AIH-IAH), IstanbulGoogle Scholar
  22. Roulin E, Cheymol A, Gellens D (2000) Impact of climate changes on the water resources in the river Meuse basin. In: Mehrota R, Soni B, Bhatia KKS (eds) Proc Int Conf Integrated Water Resources Management for Sustainable Development, 19–21 December 2000, New Delhi, India. National Institute of Hydrology, Roorkee, India, pp 1045–1054Google Scholar
  23. Smitz J, Everbecq E, Deliège J-F, Descy J-P, Wollast R, Vanderborght J-P (1997) PEGASE, une méthodologie et un outil de simulation prévisionnelle pour la gestion de la qualité des eaux de surface (PEGASE: a methodology and a forecasting simulation tool for surface water quality management). Tribune Eau 588:73–82Google Scholar
  24. Sudicky EA, Unger AJA, Lacombe S (1995) A noniterative technique for the direct implementation of well bore boundary conditions in three-dimensional heterogeneous formations. Water Resources Res 31(2):411–415Google Scholar
  25. Sun G, Amatya DM, McNulty SG, Skaggs RW, Hughes JH (2000) Climate change impacts on the hydrology and productivity of a pine plantation. J Am Water Resources Assoc 36(2):367–374Google Scholar
  26. Therrien R, Sudicky EA (2000) Well bore boundary conditions for variably saturated flow modeling. Adv Water Resources 24(2):195–201CrossRefGoogle Scholar
  27. Van Deursen WPA (2000) MEUSEFLOW 2.1, Laagwaterstudies Maasstroomgebied, RIZA project RI-2988A. RIZA, Arnhem, The NetherlandsGoogle Scholar
  28. Veldhuizen AA, Poelman A, Stuyt LCPM, Querner EP (1998) Software documentation for SIMGRO v. 3.0. Regional Water Management Simulator, Wageningen, DLO-Staring Centrum Rep 104-def.doc, 289 pGoogle Scholar
  29. Westmacott JR, Burn DH (1997) Climate change effects on the hydrological regime within the Churchill-Nelson River Basin. J Hydrol 202:263–279CrossRefGoogle Scholar
  30. Yusoff I, Hiscock KM, Conway D (2002) Simulation of the impacts of climate change on groundwater resources in eastern England. In: Hiscock KM, Rivett MO, Davison RM (eds) Sustainable groundwater development. Geol Surv Lond Spec Publ 193:325–344Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Serge Brouyère
    • 1
  • Guy Carabin
    • 1
    • 3
  • Alain Dassargues
    • 1
    • 2
  1. 1.Hydrogeology Group, Department of Georesources, Geotechnologies and Building MaterialsUniversity of LiègeSart TilmanBelgium
  2. 2.Hydrogeology & Engineering Geology Group, Department of Geology-GeographyKatholieke Universiteit LeuvenLeuvenBelgium
  3. 3.Numeca InternationalBrusselsBelgium

Personalised recommendations