Advertisement

Hydrogeology Journal

, Volume 12, Issue 4, pp 464–475 | Cite as

Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland

  • Abdallah AlaouiEmail author
  • Werner Eugster
Technical Note

Abstract

A simple method for calibrating the dual-porosity MACRO model via in situ TDR measurements during a brief infiltration run (2.8 h) is proposed with the aim of estimating local groundwater recharge (GR). The recharge was modeled firstly by considering the entire 3 m of unsaturated soil, and secondly by considering only the topsoil to the zero-flux plane (0–0.70 m). The modeled recharge was compared against the GR obtained from field measurements. Measured GR was 313 mm during a 1-year period (15 October 1990–15 October 1991). The best simulation results were obtained when considering the entire unsaturated soil under equilibrium conditions excluding the macropore flow effect (330 mm), whereas under non-equilibrium conditions GR was overestimated (378 mm).

Sensitivity analyses showed that the investigation of the topsoil is sufficient in estimating local GR in this case, since the water stored below this depth appears to be below the typical rooting depth of the vegetation and is not available for evapotranspiration. The modeled recharge under equilibrium conditions for the 0.7-m-topsoil layer was found to be 364 mm, which is in acceptable agreement with measurements.

Keywords

Groundwater recharge Dual-porosity modeling Unsaturated zone Porous media Neuchâtel Switzerland 

Résumé

Une méthode simple pour la calibration du modèle à double porosité MACRO par des mesures TDR in situ durant un bref essai d'infiltration (2.8 h) a été proposée pour l'estimation locale de la recharge de la nappe (RN). La RN a été d'abord simulée en tenant compte de toute la zone non saturée (3 m) et ensuite, en considérant uniquement la couverture du sol entre zéro et le plan du flux nul (0.70 m). La RN simulée a été comparée à la RN observée. La RN mesurée durant une année (15 octobre 1990–15 octobre 1991) était de 313 mm. Les meilleures simulations ont été obtenues en tenant compte de toute la zone non saturée sous les conditions d'équilibre excluant le flux préférentiel (330 mm). Sous les conditions de non équilibre, la RN a été surestimée (378 mm).

Les analyses de sensitivité ont montré que l'investigation de la couverture du sol est suffisante pour l'estimation locale de la RN du fait que l'eau traversant le plan du flux nul se trouverait sous la zone des racines et échapperait à l'évapotranspiration. La RN simulée sur les 0.70 m du sol sous les conditions d'équilibre était de 364 mm, ce qui est comparable aux mesures.

Resumen

Se propone un método sencillo para calibrar el modelo de doble porosidad "MACRO" mediante medidas in-situ obtenidas por TDR durante un breve ensayo de infiltración (2,8 horas), con el objetivo de estimar la recarga local al acuífero. Ésta ha sido modelada de dos formas: considerando los 3 m de suelo no saturado y empleando sólo desde la capa superior hasta el plano de flujo nulo (de 0 a 0,70 m). Se compara la recarga modelada con la recarga local medida en campo, la cual fue de 313 mm durante un ciclo anual (del 15 de octubre de 1990 al 15 de octubre de 1991). Las mejores simulaciones corresponden a la hipótesis de columna entera no saturada en condiciones de equilibrio, excluyendo el efecto de macroporos (valor de 330 mm), mientras que el resultado obtenido para condiciones de no equilibrio en la recarga local está sobreestimado (378 mm).

Los análisis de sensibilidad muestran que la investigación del horizonte superior del suelo es suficiente para estimar la recarga local en este caso, ya que el agua almacenada por debajo de esta profundidad parece estar fuera del alcance típico de las raíces de la vegetación y no puede ser evapotranspirada. La recarga modelada en condiciones de equilibrio para la capa superior de 0,70 m de espesor es de 364 mm, valor aceptable respecto a las medidas.

Notes

Acknowledgements

This study was supported by the Swiss National Science Foundation, grant No. 21-36281.92. Werner Eugster received support from a Hans Sigrist Fellowship from the University of Bern. The first author would like to thank Nick Jarvis (Swedish University of Agricultural Sciences, Uppsala, Sweden) for his advice on modeling. The efforts of two anonymous reviewers helped to more clearly present our study.

References

  1. Acutis M, Mdaghri-Alaoui A, Jarvis N, Donatelli M (2001) A software for sensitivity analysis, calibration and inversion of MACRO model. In: Proc. 2nd Int. Symp. on Modelling Cropping Systems, 16–17 July 2001, Florence, Italy, pp 207–208Google Scholar
  2. Alaoui A, Germann P, Jarvis N, Acutis M (2003) Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrol Sci J 48(3):455–472Google Scholar
  3. Arnold JG, Williams JR, Nicks AD, Sammons NB (1989) SWRRB: a watershed scale model for soil and water resources management. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, pp 847–908Google Scholar
  4. Athavale RN, Murti CS, Chand R (1980) Estimation of recharge to the phreatic aquifers of the Lower Maner Basin, India, by using the tritium injection method. J Hydrol 45:148–168CrossRefGoogle Scholar
  5. Booltink HWG, Hatano R, Bouma J (1993) Measurement and simulation of bypass flow in a structured clay soil: a physico-morphological approach. J Hydrol 148:149–168CrossRefGoogle Scholar
  6. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper No 3, Colorado State University, Fort Collins, Colorado, 27 ppGoogle Scholar
  7. Burger A (1980) Etude de l'effet de l'épandage des boues d'épuration sur la nappe souterraine de la plaine d'Areuse [Investigation of the effect of sewage-sludge application on the groundwater body of the Areuse Plain]. Internal Report, Center of Hydrogeology, University of Neuchâtel, SwitzerlandGoogle Scholar
  8. de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17CrossRefGoogle Scholar
  9. Duan Q, Gupta VK, Sorooshian S (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031Google Scholar
  10. Edmunds WM, Gaye CB, Fontes JC (1992) A record of climatic and environmental change contained in interstitial water from the unsaturated zone of northern Senegal. In: Proc. Int. Symp. on isotope techniques in water resources developments, IAEA, Vienna, 1991, Publ IAEA-SM-319/35Google Scholar
  11. Feddes RA, Bresler E, Neuman SP (1974) Field test of a modified numerical model for water uptake by root systems. Water Resour Res 10:1199–1206Google Scholar
  12. Gerwitz A, Page ER (1974) An empirical mathematical model to describe plant root systems. J Appl Ecol 11:773–780Google Scholar
  13. Hatton T (1998) Catchment scale recharge modelling: part 4 of the basics of recharge and discharge. CSIRO, Collingwood, VictoriaGoogle Scholar
  14. Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108:389–411Google Scholar
  15. Jarvis N (1989) A simple empirical model of root water uptake. J Hydrol 107:57–72CrossRefGoogle Scholar
  16. Jarvis N, Leeds-Harrison PB (1990) Field test of a water balance model in cracking clay soils. J Hydrol 112:203–218CrossRefGoogle Scholar
  17. Jarvis N (1994) The MACRO model Version 3.1: technical description and sample simulations. Reports and Dissertations No 19, Department of Soil Science, Swedish University of Agricultural Sciences, Uppsala, Sweden, 51 ppGoogle Scholar
  18. Kätterer T, Schmied B, Abbaspour KC, Schulin R (2001) Single- and dual-porosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application. Eur J Soil Sci 52:25–36CrossRefGoogle Scholar
  19. Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis, 2nd edn. Part 1. Physical and mineralogical methods. , Am Soc Agron,Monogr 9, Madison, Wisconsin, pp 687–734Google Scholar
  20. Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge: a guide to understanding and estimating natural recharge. IAH vol 8. Heise, Hannover, 343 ppGoogle Scholar
  21. Leavesley GH, Stannard LG (1995) The precipitation runoff modeling system: PRMS. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, pp 281–310Google Scholar
  22. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contamin Hydrol 7:51–73CrossRefGoogle Scholar
  23. Mdaghri-Alaoui A (1990) Hydrogeology of the Areuse plain: cartography of the water quality and evolution study of its variation in time–space scale [Hydrogéologie de la plaine d'Areuse: cartographie de la qualité de l'eau et étude de son évolution spatio-temporelle]. Dipl 3ème cycle, Centre for Hydrogeology, University of Neuchâtel, SwitzerlandGoogle Scholar
  24. Mdaghri-Alaoui A, Müller I, Christe R (1993) Geophysical prospection in the Areuse delta (Switzerland): an application of the electro-magnetic VLF-resistivity multifrequency method [Prospection géophysique du delta de l'Areuse, Suisse. Application de la méthode électromagnétique VLF-Résistivité multifréquence]. Hydrogeol 1:47–52Google Scholar
  25. Mdaghri-Alaoui A, Eugster W (2001) Field determination of the water balance of the Areuse river delta (Switzerland). Hydrol Sci J 46(5):747–760Google Scholar
  26. Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Arnold, LondonGoogle Scholar
  27. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522Google Scholar
  28. Nulsen RA, Baxter IN (1986) Water use by some crops and pastures in the southern agricultural areas of Western Australia. Report No 32, Division of Resources Management, Western Australia Dept Agric, South Perth, Western AustraliaGoogle Scholar
  29. Primault B (1962) On the calculation of the evapotranspiration [Du calcul de l'évapotranspiration], Arch Meteor Geophys B 12(1):124–150Google Scholar
  30. Roth K, Schulin R, Flühler H, Attinger W (1990) Calibration of time domain reflectrometry for water content measurement using a composite dielectric approach. Water Resour Res 26:2267–2274Google Scholar
  31. Rushton K, Ward RC (1979) The estimation of groundwater recharge. J Hydrol 41:343–362CrossRefGoogle Scholar
  32. Saxena RK, Jarvis NJ, Bergström L (1994) Interpreting non-steady state tracer breakthrough experiments in sand and clay soils using a dual-porosity model. J Hydrol 162:279–298CrossRefGoogle Scholar
  33. Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, ColoradoGoogle Scholar
  34. Sophocleous MA (1991) Combining the soil water balance and the water-level fluctuation methods to estimate natural groundwater recharge: practical aspects. J Hydrol 124:229–241CrossRefGoogle Scholar
  35. Stephens DB (1994) A perspective on diffusive natural recharge mechanisms in areas of low precipitation. Soil Sci Soc Am J 58:40–48Google Scholar
  36. Stephens DB (1996) Vadose zone hydrology. Lewis, Boca Raton, 339 ppGoogle Scholar
  37. Su N (1994) A formula for computation of time-varying recharge of groundwater. J Hydrol 160:123–135CrossRefGoogle Scholar
  38. Van Tonder GJ, Kirchner J (1990) Estimation of natural groundwater recharge in the Karoo aquifers of South Africa. J Hydrol 121:395–419CrossRefGoogle Scholar
  39. Walker GR, Zhang L, Ellis TW, Hatton TJ, Petheram C (2002) Toward a predictive framework for estimating recharge under different land uses: review of modeling and other approaches. Hydrogeol J  DOI 10.1001/s10040010181-5, 10:68–90 Google Scholar
  40. Zhang L, Dawes WR, Hatton TJ, Hume IH, O'Connell MG, Mitchell DC, Milthorp PL, Yee M (1999) Estimating episodic recharge under different crop/pasture rotations in the Mallee region, part 2: recharge control by agronomic practices. Agric Water Manage 42(2):237–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Soil Science Section, Department of GeographyUniversity of BernBernSwitzerland
  2. 2.Climatology and Meteorology Research Group, Department of GeographyUniversity of BernBernSwitzerland

Personalised recommendations