Advertisement

Hydrogeology Journal

, Volume 11, Issue 6, pp 673–686 | Cite as

Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura

  • J. Perrin
  • P.-Y. Jeannin
  • F. Zwahlen
Report

Abstract

The Milandre test site is an ideal karstic aquifer for studying the spatial heterogeneity of groundwater chemistry. Numerous observation points can be sampled: the spring, the underground river and its tributaries, and boreholes at different depths. The main causes of the spatial variability of the chemical parameters are: nature and localisation of the input, the structure of the infiltration zone, chemical reactions (transit time vs. reaction kinetics) and mixing of different waters. Physico-chemical data on springs discharging from the karstic system represent the sum of this spatial heterogeneity. Therefore, it is difficult to interpret the global-chemical response with a simple mixing model of the aquifer subsystems (runoff, matrix reservoir, epikarst). Chemical constituents related to agricultural inputs show important seasonal variations (coefficient of variation approximately 15%) and parameters linked to rainfall (δ18O) and to the aquifer (Ca2+, HCO3 ) present variations of less than 5%. This result indicates the importance of water storage in the epikarstic aquifer for periods of a few months.

Keywords

Karst Solute transport Heterogeneity Contamination Hydrochemistry 

Résumé

Le site test de Milandre est un aquifère karstique idéal pour étudier l’hétérogénéité spatiale des éléments chimiques majeurs car de nombreux points d’observation sont accessibles : source, rivière souterraine et affluents, forages à différentes profondeurs. Les principales causes de la variabilité spatiale des paramètres chimiques sont : nature et localisation des intrants, la structure de la zone d’infiltration, la réactivité des paramètres (temps de transit vs. cinétique de réaction) et le mélange des eaux. Les chimiogrammes observés à la source du système karstique représentent la somme de cette hétérogénéité spatiale. Il est de fait difficile, pour un tel aquifère, d’interpréter la réponse chimique globale en termes de mélanges d’eau des différents sous-systèmes de l’aquifère (ruissellement, réservoir matriciel, épikarst). Les éléments chimiques correspondant aux intrants agricoles montrent des variations saisonnières relativement importantes (Coefficient de variation d’environ 15%) alors que les paramètres liés à la pluie (δ18O) et à l’aquifère (Ca2+, HCO 3 ) présentent des variations de quelques pour cents. Un tel résultat indique un stockage d’eau d’au minimum quelques mois dans l’épikarst.

Resumen

La zona de ensayos de Milandre (Suiza) es un acuífero kárstico ideal para estudiar la heterogeneidad especial de la química de las aguas subterráneas. Se puede muestrear numerosos puntos de observación, incluyendo manantiales, ríos subterráneos y sus tributarios, y sondeos a diferentes profundidades. Las causas principales de la variabilidad espacial de los parámetros químicos son las siguientes: naturaleza y localización de la entrada, estructura de la zona de infiltración, reacciones químicas (tiempo de tránsito versus la cinética de las reacciones), y mezcla de aguas diferentes. Los gráficos hidroquímicos de los manantiales en el sistema kárstico representan la suma de esta heterogeneidad espacial. Por tanto, es difícil interpretar la respuesta química global con un modelo de mezcla simple de los subsistemas acuíferos (escorrentía, reservorio de la matriz, epikarst). Los parámetros asociados a aportaciones de origen agrícola muestran variaciones estacionales importantes, con un coeficiente de variación en torno al 5%, mientras que los parámetros vinculados a la precipitación (δ18O) y al acuífero (calcio, bicarbonato) presentan variaciones inferiores al 5%. Este resultado indica que se produce un almacenamiento importante de agua durante un par de meses en el acuífero epikárstico.

Notes

Acknowledgments

This project is supported by the Swiss National Science Foundation, grant no. 20–61717.00. We are indebted to the Jura Caving Club for access to the cave and to Boncourt local authorities for sending numerous samples from the spring. T. Ettlin, F. Bourret, B. Wenger and S. Cattin of the Centre of Hydrogeology gave us priceless support with the field and laboratory work. John Van Brahana and one anonymous reviewer are thanked for their fruitful comments.

References

  1. Bakalowicz M (1979) Water geochemistry contribution to the study of karst aquifers (in French). PhD Thesis, University Pierre et Marie Curie, ParisGoogle Scholar
  2. Bakalowicz M, Blavoux B, Mangin A (1974) Apport du traçage isotopique naturel à la connaissance du fonctionnement d’un système karstique [Contribution of natural isotopic tracing to the study of the behaviour of a karstic system]. J Hydrol 23:141–158CrossRefGoogle Scholar
  3. Blavoux B (1978) Study of the water cycle using oxygen 18 and tritium (in French). PhD Thesis, University Paris 6Google Scholar
  4. Blavoux B, Mudry J (1983) Décomposition chimique des hydrogrammes du karst [Chemical separation of karst springs hydrographs]. Hydrogéologie 4:270–278Google Scholar
  5. Dubreucq F (1987) Hydrochemistry of Cuisance springs, French Jura: karst, soils and anthropic influences(in French). PhD Thesis, University of Besançon, FranceGoogle Scholar
  6. Favre I (2001) A database of tracing experiments at Milandre test site: GIS and statistical analysis (in French). MSc Thesis, University of Neuchâtel, SwitzerlandGoogle Scholar
  7. Grasso DA (1999) Interpretation of hydraulic and chemical responses of karstic springs (in French). PhD Thesis, University of Neuchâtel, SwitzerlandGoogle Scholar
  8. Grasso DA, Jeannin P-Y (1998) Statistical approach to the impact of climatic variations on karst spring chemical response. In: Spec Issue: modelling in karst systems. Bull Hydrogéol 16:59–76Google Scholar
  9. Gretillat P-A (1996) Porous and karstic aquifers of Ajoie (Swiss Jura): ata for the 1/25,000 hydrogeological map (in French). PhD Thesis, University of Neuchâtel, SwitzerlandGoogle Scholar
  10. Groves CG (1992) Geochemical and kinetic evolution of a karst flow system: Laurel Creek, West Virginia. Groundwater 30(2):186–191Google Scholar
  11. Hess JW, White WB (1988) Storm response of the karstic carbonate aquifer of south-central Kentucky. J Hydrology 99:235–252CrossRefGoogle Scholar
  12. Jeannin P-Y (1995) Action Cost 65—Projets Bure et Hölloch (Suisse): cadre théorique, position des problèmes, présentation des sites étudiés et des données disponibles (Cost 65 action- Bure and Hölloch projects (Switzerland): theoretical context, problems and presentation of the studied sites and of the available data). Bull Hydrogéol 14:53–82Google Scholar
  13. Jeannin P-Y (1996) Structure and behaviour of karstic aquifers (in French). PhD Thesis, University of Neuchâtel, SwitzerlandGoogle Scholar
  14. Kiraly L, Müller I (1979) Hétérogénéité de la perméabilité et de l’alimentation dans le karst : effet sur la variation du chimisme des sources karstiques [Heterogeneity of the permeability and the infiltration in the karst: effect on the karstic springs water chemistry variations]. Bull Centre Hydrogéol 3:237–285Google Scholar
  15. Lakey B, Krothe NC (1996) Stable isotopic variation of storm discharge from a perennial karst spring, Indiana. Water Resour Res 32(3):721–731Google Scholar
  16. Lastennet R, Mudry J (1997) Role of karstification and rainfall in the behavior of a heterogeneous karst system. Environ Geol 32(2):114–123CrossRefGoogle Scholar
  17. Lee ES, Krothe NC (2001) A four component mixing model for water in karst terrain in south-central Indiana, USA: using solute concentration and stable isotopes as tracers. Chem Geol 179:129–143CrossRefGoogle Scholar
  18. Liñan C, Andreo B, Carrasco F, Vadillo I (1999) Hidrodinamica e Hidroquimica de las aguas de goteo de la cueva de Nerja (Hydrodynamics and hydrochemistry of percolation water in Nerja cave). In: Andreo CD(ed) Contribucion del estudio cientifico de las cavidades karsticas al conocimiento geologico Málaga [Contribution of scientific studies in caves to the earth sciences], pp 393–402Google Scholar
  19. Mayer J (1999) Spatial and temporal variation of groundwater chemistry in Petitjohns Cave, Northwest Georgia, USA. J Cave Karst Stud 61(3):131–138Google Scholar
  20. Maréchal J-C (1994) Study and modelling of transport processes in karst conduits (in French). MSc Thesis, Hydrogeology Centre, Neuchâtel University, SwitzerlandGoogle Scholar
  21. Pedersen JK, Bjerg PL, Christensen TH (1991) Correlation of nitrate profiles with groundwater and sediment characteristics in a shallow sandy aquifer. J Hydrol 124:263–277CrossRefGoogle Scholar
  22. Perrin J (1997) Géologie et géochimie des eaux dans le réseau du Grand Cor [Geology and water chemistry in the Grand Cor cave system]. In: Jeannin P-Y (ed) 6th Conference on limestone hydrology and fissured media, La Chaux-de-Fonds, Switzerland, pp 99–102Google Scholar
  23. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, SW Germany). PhD Thesis, University of TübingenGoogle Scholar
  24. Scanlon BR, Thrailkill J (1987) Chemical similarities among physically distinct spring types in karst terrain. J Hydrol 89:259–279Google Scholar
  25. Ternan JL (1972) Comments on the use of a calcium hardness variability index in the study of carbonate aquifers, with references to the central Pennines, England. J Hydrol 16:317–321CrossRefGoogle Scholar
  26. Vervier P (1990) Hydrochemical characterization of the water dynamics of a karstic system. J Hydrol 121:103–117CrossRefGoogle Scholar
  27. Wicks CM (1997) Origins of Groundwater in a fluviokarst basin: Bonne Femme Basin in central Missouri, USA. Hydrogeol J 5(3):89–96CrossRefGoogle Scholar
  28. Wicks CM, Engeln JF (1997) Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA. J Hydrol 198:30–41CrossRefGoogle Scholar
  29. Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61:45–67CrossRefGoogle Scholar
  30. Worthington SR, Davies GJ, Quinlan JF (1992) Geochemistry of springs in temperate carbonate aquifers : recharge type explains most of the variation. In: Chauve P, Zwahlen F (eds) 5ème colloque en pays calcaire. Neuchâtel pp 341–346Google Scholar
  31. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Centre of HydrogeologyNeuchâtel UniversityNeuchâtelSwitzerland

Personalised recommendations