Advertisement

Hydrogeology Journal

, Volume 11, Issue 4, pp 504–517 | Cite as

Identifying trends in groundwater quality using residence time indicators: an example from the Permian aquifer of Dumfries, Scotland

  • Alan M. MacDonald
  • W. George Darling
  • Derek F. Ball
  • Harald Oster
Report

Abstract

The Permian sandstone and breccia aquifer of Dumfries has an important role in supplying water to the principal town in southwest Scotland. The area comprises mainly pastoral farmland with some industry and fish farming. Ongoing development of the aquifer has revealed the existence of complex groundwater flow through fractures and increasing nitrate concentrations. To further investigate these issues, the age and quality of groundwater throughout the aquifer has now been assessed using standard hydrogeochemical techniques together with CFCs and SF6 as residence time indicators. The aquifer consists of sandstone- and breccia-dominated units: the Locharbriggs Sandstone in the east and the Doweel Breccia in the west. Groundwater throughout the aquifer is of Ca–Mg–HCO3 type and moderately mineralised; pH is near neutral. The observed groundwater chemistry is the product of maritime rainfall modified by the dissolution of carbonate material in the breccia, sandstone and surficial deposits. CFC and SF6 concentrations are interpreted on the basis of mixing between older (>50 years) and recent (1990s) components. Although there is generally a higher proportion of older water within the Locharbriggs Sandstone compared to the Doweel Breccia, stable isotope evidence suggests that the older water component in the interbedded sandstones of the breccia is of much greater antiquity, possibly containing an element of palaeowater. Concentrations of nitrate across the aquifer can be directly related to the amount of recent recharge. Modern groundwater contains approximately 9 mg l−1 NO3-N and pre-1950s groundwater has approximately 2 mg l−1 NO3-N. Nitrate concentrations measured at individual boreholes are explained by the relative proportions of modern and pre-1950s groundwater. If current practices continue, the concentrations of nitrate measured across the Dumfries Basin will rise as the proportion of pre-1950s groundwater diminishes.

Keywords

Groundwater age Groundwater flow Hydrochemistry Sedimentary rocks 

Résumé

L'aquifère des grès et brèches du Permien de Dumfries joue un rôle important dans l'alimentation en eau de la principale ville du sud-ouest de l'Écosse. La région est principalement soumise à de l'élevage pastoral avec quelques industries et des piscicultures. La progression de l'exploitation de cet aquifère a révélé l'existence d'un écoulement souterrain complexe en fractures et des concentrations en nitrate croissantes. Dans le but d'étudier ces deux points plus en détail, l'âge et la qualité de l'eau souterraine dans tout l'aquifère ont été évalués en utilisant des techniques hydrogéochimiques conventionnelles avec les CFC et SF6 comme marqueurs du temps de séjour. L'aquifère est constitué par des unités dominées par des brèches et des grès: les grès de Locharbriggs à l'est et les brèches de Doweel à l'ouest. L'eau souterraine dans tout l'aquifère a un faciès bicarbonaté calcique et magnésien et est moyennement minéralisée; le pH est proche de la neutralité. Le chimisme observé de l'eau souterraine résulte des apports marins par la pluie modifiés par la dissolution du matériau carbonaté des brèches, des grès et des formations superficielles. Les concentrations en CFC et SF6 sont interprétées sur la base d'un mélange entre des composantes ancienne (>50 ans) et récente (années 1990). Bien qu'il y ait en général une plus forte proportion d'eau ancienne dans les grès de Locharbriggs que dans la brèche de Doweel, les isotopes stables suggèrent que la composante d'eau ancienne dans les grès interstratifiés des brèches est beaucoup plus ancienne, contenant probablement un élément d'eau fossile. Les concentrations en nitrate dans l'aquifère peuvent être directement reliées au taux de recharge récente. L'eau souterraine moderne contient approximativement 9 mg l−1 en NO3-N et l'eau souterraine d'avant 1950 environ 2 mg l−1 en NO3-N. Les concentrations en nitrate mesurées dans des forages individuels sont expliquées par des proportions relatives d'eaux souterraines moderne et antérieure à 1950. Si les pratiques actuelles continuent, les concentrations en nitrate mesurées dans le bassin de Dumfries augmenteront alors que la part de l'eau souterraine d'avant 1950 diminuera.

Resumen

El acuífero de areniscas y brechas Pérmicas de Dumfries desempeña un papel importante en el abastecimiento a la ciudad principal del Sudoeste de Escocia. El área comprende sobretodo tierras de pastoreo y granjas, junto con algunas industrias y piscifactorías. El desarrollo iniciado en el acuífero ha revelado la existencia de un complicado flujo subterráneo a través de las fracturas y de un aumento progresivo en la concentración de nitrato. Con el fin de profundizar en el conocimiento de estos temas, se ha determinado la edad y calidad de las aguas subterráneas en todo el acuífero por medio de técnicas hidrogeoquímicas estándar y de indicadores del tiempo de residencia como los clorofluorcarbonados (CFCs) y el fluoruro de azufre (SF6). El acuífero está formado por las areniscas de Locharbriggs, al Este, y las brechas de Doweel, hacia el Oeste. Las aguas subterráneas son de tipo bicarbonatadas cálcico-magnésicas y presentan una mineralización moderada, mientras que el pH es prácticamente neutro. La química de las aguas subterráneas es el resultado del aerosol marino modificado por la disolución de materiales carbonatados en las brechas, areniscas y depósitos superficiales. Las concentraciones de CFCs y SF6 se interpretan a partir de una mezcla de aguas entre una componente antigua (más de 50 años) y una reciente (de la década de 1990). Aunque en general se da una mayor proporción de aguas antiguas en las areniscas de Locharbriggs que en las Brechas de Doweel, los isótopos estables sugieren que la componente de aguas antiguas en las intercalaciones de areniscas que aparecen en la formación de brechas es mucho más antigua, y que, posiblemente, se trate de paleoaguas. Las concentraciones de nitrato en el acuífero pueden ser relacionadas directamente con la aportación de recarga reciente. Las aguas subterráneas modernas contienen aproximadamente 9 mg l−1 de nitrato, mientras que las aguas subterráneas anteriores a 1950 tienen unos 2 mg l−1. Se puede explicar las concentraciones de nitrato en pozos individuales por las proporciones relativas de aguas subterráneas modernas y anteriores a 1950. Si las prácticas actuales continúan, se producirá un aumento de las concentraciones de nitrato en la cuenca de Dumfries debido a la disminución de la proporción de aguas antiguas.

Notes

Acknowledgements

Local farmers and industry, Scottish Water, and Dumfries and Galloway Council are gratefully acknowledged for allowing access to boreholes. The study was funded jointly by the British Geological Survey, Scottish Water and the Scottish Environment Protection Agency. Water quality analysis was overseen by Janice Trafford at BGS Wallingford. Helpful comments from colleagues Nick Robins, Brighid Ódochartaigh, Daren Gooddy, Maxine Ankhurst and Clive Auton are particularly appreciated. The paper is published with the permission of the Executive Director, British Geological Survey (NERC).

References

  1. Appelo CAJ, Postma D (1994) Geochemistry, groundwater and pollution. Balkema, RotterdamGoogle Scholar
  2. British Geological Survey (1996) Thornhill Scotland Sheet 9E, Solid Geology, 1:50 000. Keyworth, NottinghamGoogle Scholar
  3. Brookfield ME (1978) Revision of the stratigraphy of Permian and supposed Permian rocks of southern Scotland. Geol Rundsch 67:110–149Google Scholar
  4. Brookfield ME (1980) Permian intermontane basin sedimentation in southern Scotland. Sediment Geol 27:167–194Google Scholar
  5. Buckley DK (2000) Some case histories of geophysical downhole logging to examine borehole site and regional groundwater movement in Celtic regions. In: Robins NS, Misstear BDR (eds) Groundwater in the Celtic regions: studies in hard-rock and Quaternary hydrogeology. Geol Soc Lond Spec Publ 182:219–238Google Scholar
  6. Busenberg E, Plummer LN (2000) Dating young groundwaters with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resources Res 36:3011–3030Google Scholar
  7. Cheney CS, MacDonald AM (1993) The hydrogeology of the Dumfries basin. British Geological Survey Rep WD/93/46CGoogle Scholar
  8. Cook PG, Solomon DK (1995) Transport of atmospheric trace gases to the water-table: implications for groundwater dating with chlorofluorocarbons and Krypton 85. Water Resources Res 31:263–270Google Scholar
  9. Darling WG, Bath AH, Talbot JC (2003) The O and H stable isotopic composition of fresh waters in the British Isles. 2. Surface waters and groundwater. Hydrol Earth Syst Sci 7:10–20Google Scholar
  10. Gaus I, Ó Dochartaigh BÉ (2000) Conceptual modelling of data-scarce aquifers in Scotland: the sandstone aquifers of Fife and Dumfries. In: Robins NS, Misstear BDR (eds) Groundwater in the Celtic regions: studies in hard-rock and Quaternary hydrogeology. Geol Soc Lond Spec Publ 182:157–168Google Scholar
  11. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Pap no 2254Google Scholar
  12. Hinsby K, Edmunds WM, Loosli HH, Manzano M, Melo M and Barbecot F (2001) The modern water interface: recognition, protection and development-advance of modern waters in European aquifer systems. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of groundwater since the Late Pleistocene. Geol Soc Lond Spec Publ 189:271–288Google Scholar
  13. Johnston CT, Cook PG, Frape SK, Plummer LN, Busenberg E, Blackport RJ (1998) Groundwater age and nitrate distribution within a glacial aquifer beneath a thick unsaturated zone. Ground Water 36:171–180Google Scholar
  14. McKeever PJ (1992) Petrography and diagenesis of the Permo-Triassic of Scotland. In: Parnell J (ed) Basins on the Atlantic seaboard: petroleum geology, sedimentology and basin evolution. Geol Soc Lond Spec Publ 62:71–96Google Scholar
  15. McMillan AA (2002) Geology of the New Galloway and Thornhill district. Mem Br Geol Surv, sheets 9W and 9E (Scotland)Google Scholar
  16. National Environmental Technology Centre (1998) UK Network for rain quality measurements. http://www.aeat.co.uk/netcen/airqual/data/nonauto/rain.html (site no 5107)
  17. Oster H, Sonnag C, Munnich KO (1996) Groundwater age dating with chlorofluorocarbons. Water Resources Res 37:2989–3001Google Scholar
  18. Plummer LN, Busenberg E (1999) Chlorofluorocarbons. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer, Dordrecht, pp 441–478Google Scholar
  19. Roberts G, Marsh T (1987) The effects of agricultural practices on the nitrate concentrations in the surface water domestic supplies of Western Europe. IAHS Publ 164:365–380Google Scholar
  20. Robins NS (1986) Groundwater chemistry of the main aquifers in Scotland. Rep Br Geol Surv 18(2)Google Scholar
  21. Robins NS (1990) Hydrogeology of Scotland. HMSO, LondonGoogle Scholar
  22. Robins NS (2002) Groundwater quality in Scotland: major ion chemistry of the key groundwater bodies. Sci Total Environ 294:41–56CrossRefPubMedGoogle Scholar
  23. Robins NS, Buckley DK (1988) Characteristics of the Permian and Triassic aquifers of south-west Scotland. Q J Eng Geol 21:329–325Google Scholar
  24. Stone P, Plant JA, Mendum JR, Green PM (1999) A regional geochemical assessment of some terrane relationships in the British Caledonides. Scottish J Geol 35:145–156Google Scholar
  25. Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (3H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187–205Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Alan M. MacDonald
    • 1
  • W. George Darling
    • 2
  • Derek F. Ball
    • 1
  • Harald Oster
    • 3
  1. 1.British Geological SurveyEdinburghUK
  2. 2.British Geological SurveyCrowmarsh Gifford, WallingfordUK
  3. 3.SpurenstofflaborWachenheimGermany

Personalised recommendations