Hydrogeology Journal

, Volume 11, Issue 2, pp 205–216

Temporal variations in the depth-specific hydrochemistry and sewage-related microbiology of an urban sandstone aquifer, Nottingham, United Kingdom

  • A. A. Cronin
  • R. G. Taylor
  • K. L. Powell
  • M. H. Barrett
  • S. A. Trowsdale
  • D. N. Lerner
Paper

Abstract

The temporal and spatial characteristics of groundwater recharge in urban environments remain poorly understood. Depth-specific monitoring of groundwater quality in the Triassic Sandstone underlying the city of Nottingham, UK, indicates that contamination results primarily from sewage and atmospheric sources. The temporal and depth-specific characteristics of microbial and inorganic (e.g. nitrate, chloride, sulphate) contamination over the investigation period differ significantly and reflect the contrasting transport characteristics of surface-loaded solutes and particulate microbial species (bacteria and viruses) in the Triassic Sandstone. Differences result from a variety of factors, which include microbial die-off, dilution, and the contaminant-source characteristics. Observations in this study show that low levels of microbial contamination should be expected at depth in fissured sandstone due to aquifer heterogeneities such as fissuring and the occurrence of mudstone bands, though the magnitude of this contamination will vary over time. Furthermore, urban groundwater-protection measures based on solute-transport estimates may not be applicable to microbial contamination.

Keywords

Urban groundwater Microbial contamination Hydrochemistry Depth-specific sampling 

Résumé

Les caractéristiques temporelles et spatiales de la recharge de nappes en milieu urbain sont mal connues. Le suivi à une profondeur spécifique de la qualité des eaux souterraines dans les grès triasiques sous la ville de Nottingham (Grande-Bretagne) indique que la contamination provient principalement des égouts et de l'atmosphère. Les caractéristiques temporelles et à des profondeurs spécifiques de la contamination microbienne et minérale (par exemple les nitrates, les chlorures et les sulfates) diffèrent de manière significative au cours de la période d'étude et reflètent les caractères contrastés du transport de solutés acquis en surface et des espèces microbiennes des colloïdes (bactéries et virus) dans les grès du Trias. Des différences résultent d'une variété de facteurs tels que l'extinction microbienne, la dilution et les caractéristiques des sources de contaminants. Des observations faites dans cette étude montrent que les faibles niveaux de contamination microbienne peuvent être trouvés en profondeur dans les grès fissurés du fait d'hétérogénéités comme la fissuration et la présence de niveaux pélitiques indurés, même si l'ordre de grandeur de cette contamination varie au cours du temps. En outre, des mesures de protection des eaux souterraines en milieu urbain basées sur des estimations du transport de solutés peuvent ne pas être applicables à la contamination microbienne.

Resumen

Actualmente, no se conoce con detalle las características temporales y espaciales de la recarga de acuíferos en ambientes urbanos. El muestreo selectivo en profundidad de la calidad de las aguas subterráneas en el acuífero formado por las areniscas Triásicas de la ciudad de Nottingham (Reino Unido) indica que la contaminación procede sobretodo de las aguas residuales y de fuentes atmosféricas. Las características temporales y verticales de la contaminación microbiana e inorgánica (por nitratos, cloruros y sulfatos) detectadas durante la investigación difieren significativamente y reflejan el contraste en el comportamiento dentro del acuífero de los solutos transportados desde la superficie y de las especies particuladas microbianas (bacterias y virus). Las diferencias son consecuencia de factores varios, incluyendo la inactivación microbiana, la dilución y las características de la fuente contaminante. El estudio demuestra que cabe esperar bajos niveles de contaminación microbiana en profundidad en areniscas fisuradas, debido a heterogeneidades tales como las propias fisuras y la intercalación de niveles lutíticos, aunque la magnitud de esta contaminación variará con el tiempo. Más aún, es posible que las medidas de protección de acuíferos en zonas urbanas que se basan en estimaciones de transporte de solutos no sean aplicables a la contaminación microbiana.

References

  1. Adams MH (1959) Bacteriophages. Interscience, LondonGoogle Scholar
  2. Alves PF, Tellam JH (2001) The impact of horse dung on urban groundwater quality in the Birmingham Triassic aquifer, UK. In: Thornton S, Oswald S (eds) Proc 3rd Int Conf on Groundwater Quality, Groundwater Quality 2001, University of Sheffield, June, pp 188–190Google Scholar
  3. Anonymous (1982) The bacteriological examination of drinking water supplies—methods for the examination of waters and associated materials. Reports on Public Health and Medical Subjects, no 71. HMSO, LondonGoogle Scholar
  4. Anonymous (1994) The microbiology of water 1994. Part 1. Drinking water. HMSO, LondonGoogle Scholar
  5. Appelo CAJ, Postma D (1993) Geochemistry, groundwater and pollution. AA Balkema, Rotterdam, 536 ppGoogle Scholar
  6. Barker AP, Newton RJ, Bottrell SH (1998) Processes affecting groundwater chemistry in a zone of saline intrusion into an urban sandstone aquifer. Appl Geochem 13:735–749CrossRefGoogle Scholar
  7. Barrett MH, Yang Y, Lerner DN, French MJ, Tellam JH (1997) The impact of cities on the quantity and quality of their underlying groundwater. Incorporating the importance of non-agricultural sources of nitrate in UK groundwaters. Final Report to the EPSRC, University of BradfordGoogle Scholar
  8. Barrett MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources. A review and case study in Nottingham, UK. Water Res 33(14):3083–3097CrossRefGoogle Scholar
  9. Carmon N, Shamir U, Meiron-Pistner S (1997) Water sensitive urban planning. J Environ Plan Manage 40(4):413–434CrossRefGoogle Scholar
  10. Chapron CD, Balester NA, Fontaine JH, Frades CN, Marggolin AB (2000) Detection of astroviruses, enteroviruses and adenoviruses types 40 and 41 in surface waters collected and evaluated by the information collection rule and an integrated cell culture-nested PCR procedure. Appl Environ Microbiol 66(6):2520–2525CrossRefPubMedGoogle Scholar
  11. Charsley TJ, Rathbone PA, Lowe DJ (1990) Nottingham: a geological background for planning and development. Tech Rep WA/90/1, p 82. British Geological Society, Keyworth, NottinghamGoogle Scholar
  12. Cherry JA, Gilham RW, Anderson EG, Johnson PE (1983) Migration of contaminants at a landfill: a case study. 2. Groundwater monitoring devices. J Hydrol 63:31–49Google Scholar
  13. CIRIA (1989) The engineering implications of rising groundwater levels in the deep aquifer beneath London. Spec Publ 69, 116 pp. Construction Industry Research and Information Association, LondonGoogle Scholar
  14. Cronin AA (2000) Groundwater flow and isotope geochemical modelling of the Triassic sandstone aquifer, Northern Ireland. PhD Thesis, School of Civil Engineering, Queens University Belfast, 272 ppGoogle Scholar
  15. Cronin AA, Pedley S (2002) Microorganisms in groundwater. Tracers and troublemakers. EA R&D Tech Rep P2-290/TR. Environment Agency, Bristol, 40 ppGoogle Scholar
  16. Cronin AA, Elliot T, Yang Y, Kalin RM (2000) Geochemical modelling and isotope studies in the Sherwood sandstone aquifer, Lagan Valley, Northern Ireland. In: Dassargues A (ed) Proc TRAM 2000 Conf Tracers and Modelling in Hydrogeology, Liege, Belgium, May, IAHS Publ 262/2000, IAHS Press, Wallingford, pp 425–431Google Scholar
  17. Custudio E (1997) Groundwater quantity and quality changes related to land and water management around urban areas: blessings and misfortunes. In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment vol 1. Problems, Processes and Management, Nottingham, pp 11–22Google Scholar
  18. Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer, England. Geochim Cosmochim Acta 46:2069–2081Google Scholar
  19. Edwards KC (1966) Nottingham and its region. Prepared for the meeting of the British Association for the Advancement of Science, NottinghamGoogle Scholar
  20. Edworthy KJ (1989) Waste disposal and groundwater management. J Inst Water Environ Manage 3:109–114Google Scholar
  21. Eiswirth M, Hotzl H (1994) Groundwater contamination by leaky sewer systems. In: National Conf of Institution of Engineers, Water Down Under, Adelaide, Australia, November, pp 111–114Google Scholar
  22. Flipse JR, Katz BG, Lindner JB, Markel R (1984) Sources of nitrate in groundwater in a sewered housing development, Central Long Island, New York. Ground Water 22(4):418–426Google Scholar
  23. Foster SSD, Morris BL (1994) Effects of urbanisation on groundwater recharge. In: Williamson WB (ed) Groundwater Problems in Urban Areas, ICE Conf, London, June 1993, Thomas Telford, LondonGoogle Scholar
  24. Foster SSD, Morris B, Lawerence A, Chilton J (1990) Groundwater impacts and issues in developing cities. An introductory review. In: Chilton J (ed) Groundwater in the urban environment: selected city profiles. AA Balkema, Rotterdam, pp 3–16Google Scholar
  25. Green J, Gallimore C, Norcott JP, Lewis D, Brown DW (1995) Broadly reactive reverse transcriptase polymerase chain reaction for the diagnosis of SRSV-associated gastroenteritis. J Med Virol 47:392–398PubMedGoogle Scholar
  26. Howard KWF (2001) Polluted groundwater: deadly lessons from Walkerton, Ontario, Canada. In: Seiler, Wohnlich (eds) Proc IAH 2001 Congr, New Approaches in Characterising Groundwater Flow, Munich, Germany, September, AA Balkema, Rotterdam, pp 521–525Google Scholar
  27. Howard KWF, Boyce JI, Livingstone SJ, Salvatori SL (1993) Road salt impacts on groundwater quality: the worst is still to come! GSA Today 3(12):318–321Google Scholar
  28. Howard KWF, Gerber RE (1997) Do tills beneath urban Toronto provide adequate groundwater protection? In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment vol 1. Problems, Processes and Management, Nottingham, pp 433–438Google Scholar
  29. Iturriza Gomara M, Green J, Brown DWG, Ramsay M, Desselberger U, Gray J (2000) Seroepidemiological and molecular surveillance of human rotavirus infections in the UK. Public Health Laboratory Service, LondonGoogle Scholar
  30. Jeffcoat A (2001) Characterisation and modelling of the Permo-Triassic sandstone aquifer of Cheshire. PhD Thesis, University of Birmingham, 200 ppGoogle Scholar
  31. Kimblin RT (1995) The chemistry and origin of groundwater in Triassic sandstone and Quaternary deposits, northwest England, and some UK comparisons. J Hydrol 172:293–311CrossRefGoogle Scholar
  32. Ku HFH, Hagelin NW, Buxton HT (1992) Effects of urban storm-runoff control on groundwater recharge in Nassau county, New York. Ground Water 30(4):507–514Google Scholar
  33. Lacombe S, Sudicky EA, Frape SK, Unger AJA (1995) Influence of leaky boreholes on cross-formational groundwater flow and contaminant transport. Water Resour Res 31(8):1871–1882Google Scholar
  34. Lawerence AR, Stuart ME, Barker JA, Tester DJ (1996) Contamination of chalk groundwater by chlorinated solvents: a case study of deep penetration by non-aqueous phase liquids. J CIWEM 10:263–272Google Scholar
  35. Lerner DN (1996) Urban groundwater: an asset for a sustainable city, Eur Water Pollut Control 6(5):43Google Scholar
  36. Lerner DN (1997) Too much or too little. Recharge in urban areas. In: Chilton J et al. (eds) Proc 27th IAH Groundwater Congr, Groundwater in the Urban Environment, Vol 1. Problems, Processes and Management, Nottingham, pp 41–47Google Scholar
  37. Lerner DN, Issar SI, Simmers I (1990) Recharge due to urbanisation. Groundwater recharge. A guide to understanding and estimating natural recharge, Int Contrib Hydrogeol 8:201–214Google Scholar
  38. Lopes TJ, Bender DA (1998) Non-point sources of volatile organic compounds in urban areas: relative importance of land surfaces and air. Environ Pollut 101:221–230CrossRefGoogle Scholar
  39. Morris BL, Lawerence AR, Stuart M (1994) Impact of urbanisation on groundwater quality project summary report. Rep WC/94/56, prepared for the Overseas Development Administration Project 91/13. British Geological Survey, Keyworth, NottinghamGoogle Scholar
  40. Mounts AW, Ando T, Koopmans M, Bresee JS, Noel J, Glass RI (2000) Cold weather seasonality of gastroenteritis associated with Norwalk-like viruses. J Infect Dis 181(Suppl 2):284–287Google Scholar
  41. Nazari MN, Burston MW, Bishop PK, Lerner DN (1993) Urban groundwater pollution: a case study from Coventry, UK. Ground Water 31(3):417–424Google Scholar
  42. Parker JW, Perkins MA, Foster SSD (1982) Groundwater quality stratification: its relevance to sampling strategy. Publ 31. Commisie voor Hydrologisch Onderzoek, TNO, Delft, pp 43–54Google Scholar
  43. Powell KL, Barrett MH, Pedley S, Tellam JH, Stagg KA, Greswell RB, Rivett MO (2000a) Enteric virus detection in groundwater using a glasswool trap. In: Sililo O et al. (eds) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 813–816Google Scholar
  44. Powell KL, Tellam JH, Barrett MH, Pedley S, Stagg K, Greswell RB, Rivett MO (2000b) National groundwater and contaminated land centre project NC/99/40. Optimisation of a new method for detection of viruses in groundwater. Report to the Environment Agency, BristolGoogle Scholar
  45. Powell KL, Cronin AA, Barrett MH, Sellwood J, Pedley S (2001) Distribution of microbiological contaminants in Triassic sandstone urban aquifers. EA R&D Tech Rep P2-255/TR, July. Final Report to the Environment Agency, Bristol, 26 ppGoogle Scholar
  46. Powell KL, Taylor RG, Cronin AA, Barrett MH, Pedley S, Sellwood J, Trowsdale S, Lerner DN (2003) Microbial contamination of two urban sandstone aquifers in the UK. Water Res 37(2):339–352CrossRefPubMedGoogle Scholar
  47. Rossi P (1992) Use of new bacteriophage as groundwater tracers: decay rate and adsorption. In: Hotzl, Werner (eds) Tracer hydrology. AA Balkema, Rotterdam, pp 68–70Google Scholar
  48. Sharma ML, Herne D, Byrne JD (1994) Nutrient discharge beneath urban lawns to a sandy aquifer systems. In: Proc Natl Conf of Institution of Engineers, Water Down Under, Adelaide, Australia, November, pp 309–315Google Scholar
  49. Standing Committee of Analysts (1995) Methods for the isolation and identification of human enteric viruses from waters and associated materials. Methods for the examination of waters and associated materials. HMSO, LondonGoogle Scholar
  50. Squillance PJ, Zogorski JS, Wilbur WG, Price CV (1996) Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States 1993–94. Environ Sci Technol 30:1721–1730CrossRefGoogle Scholar
  51. Streetly HR, Hamilton ACL, Bets C, Tellam JH, Herbert AW (2002) Reconnaissance tracer tests in the Triassic sandstone aquifer north of Liverpool, UK. Q J Eng Geol Hydrogeol 35(2):155–166Google Scholar
  52. Taylor RG, Barrett MH, Baines OP, Trowsdale SA, Lerner DN, Thornton SF (2000) Depth variations in aquifer hydrochemistry using a low-cost, multilevel piezometer. In: Sililo O et al. (eds) Groundwater: past achievements and future challenges. AA Balkema, Rotterdam, pp 651–654Google Scholar
  53. Tellam J (1995) Urban groundwater pollution in the Birmingham Triassic sandstone aquifer. In: Proc 4th Annu IBC Conf on Groundwater Pollution, London, 15–16 March, 10 ppGoogle Scholar
  54. United States Geological Survey (1999) The quality of our nation's waters: nutrients and pesticides. USGS Circ 1225 (8-6-99)Google Scholar
  55. Walton NRG (1981) A detailed hydrochemical study of groundwaters from the Triassic sandstone aquifer of south-west England. Institute of Geological Sciences Rep 81/5. HMSO, London,43 ppGoogle Scholar
  56. Yang Y, Lerner DN, Barrett MH, Tellam JH (1999) Quantification of groundwater recharge in the city of Nottingham, UK. Environ Geol 38(3):183–198CrossRefGoogle Scholar
  57. Yates MV, Gerba CP, Kelley LM (1985) Virus persistence in groundwater. Appl Environ Microbiol 49(4):778–781PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • A. A. Cronin
    • 1
  • R. G. Taylor
    • 2
  • K. L. Powell
    • 1
  • M. H. Barrett
    • 1
  • S. A. Trowsdale
    • 3
  • D. N. Lerner
    • 3
  1. 1.Robens Centre for Public and Environmental HealthUniversity of SurreyGuildfordUK
  2. 2.Department of GeographyUniversity College LondonLondonUK
  3. 3.GPRG, Department of Civil and Structural EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations