Advertisement

Hydrogeology Journal

, Volume 11, Issue 1, pp 7–40 | Cite as

The role of hydromechanical coupling in fractured rock engineering

  • Jonny RutqvistEmail author
  • Ove Stephansson
Paper

Abstract

This paper provides a review of hydromechanical (HM) couplings in fractured rock, with special emphasis on HM interactions as a result of, or directly connected with human activities. In the early 1960s, the coupling between hydraulic and mechanical processes in fractured rock started to receive wide attention. A series of events including dam failures, landslides, and injection-induced earthquakes were believed to result from HM interaction. Moreover, the advent of the computer technology in the 1970s made possible the integration of nonlinear processes such as stress–permeability coupling and rock mass failure into coupled HM analysis. Coupled HM analysis is currently being applied to many geological engineering practices. One key parameter in such analyses is a good estimate of the relationship between stress and permeability. Based on available laboratory and field data, it was found that the permeability of fractured rock masses tends to be most sensitive to stress changes at shallow depth (low stress) and in areas of low in-situ permeability. In highly permeable, fractured rock sections, fluid flow may take place in clusters of connected fractures which are locked open as a result of previous shear dislocation or partial cementation of hard mineral filling. Such locked-open fractures tend to be relatively insensitive to stress and may therefore be conductive at great depths. Because of the great variability of HM properties in fractured rock, and the difficulties in using laboratory data for deriving in-situ material properties, the HM properties of fractured rock masses are best characterized in situ.

Keywords

Fractured rocks Mechanical Hydromechanical coupling Stress Permeability 

Résumé

Ce papier passe en revue les couplages hydromécaniques (HM) dans les roches fracturées, en mettant tout spécialement l'accent sur les interactions HM résultant de ou directement connectées à des activités humaines. Au début des années soixante, on a commencé à vraiment s'intéresser au couplage entre les processus hydrauliques et mécaniques dans les roches fracturées. Une série d'évènements, dont des ruptures de barrages, des glissements de terrain et des séismes induits par des injections, a été envisagée comme la conséquence d'interactions HM. En outre, l'émergence de la technologie des ordinateurs dans les années soixante-dix a rendu possible l'intégration de processus non linéaires tels que le couplage contrainte–perméabilité et la rupture d'un massif rocheux dans l'analyse HM couplée. L'analyse HM couplée est couramment réalisée dans de nombreuses applications en géologie de l'ingénieur. Un paramètre clé dans une telle analyse est une bonne estimation de la relation entre la contrainte et la perméabilité. À partir de données disponibles de laboratoire et de terrain, on a trouvé que la perméabilité de massifs de roches fracturées tend à être plus sensible aux changements de contrainte à faible profondeur (faible contrainte) et dans les régions de faible perméabilité in situ. Dans les sections très perméables des roches fracturées, l'écoulement du fluide peut prendre place dans des zones de fractures connectées qui sont maintenues ouvertes du fait de la dislocation initiale par cisaillement ou de la cimentation partielle du remplissage minéral induré. De telles fractures maintenues ouvertes tendent à être relativement insensibles à la contrainte et peuvent alors être conductives à grandes profondeurs. Cependant, ce papier met en avant la grande variabilité des propriétés HM en roches fracturées et les difficultés à utiliser les données de laboratoire pour en déduire les propriétés in situ du matériau. À cause des difficultés telles que les propriétés dépendant de la dimension, des désordres dans l'échantillon et un échantillonnage non représentatif, les propriétés HM des massifs de roches fracturées sont mieux caractérisées in situ.

Resumen

El presente artículo revisa los acoplamientos hidromecánicos en rocas fracturadas, haciendo énfasis en las interacciones hidromecánicas resultantes o directamente relacionadas con las actividades antrópicas. A comienzos de los años sesenta, el acoplamiento entre los procesos hidráulicos y los mecánicos en rocas fracturadas comenzó a ser tenido en cuenta de forma generalizada. Una serie de sucesos, incluyendo roturas de presas, deslizamientos de terreno y terremotos inducidos por inyección, fueron considerados como una consecuencia de las interacciones hidromecánicas. Después, la introducción de los computadores hacia los setenta permitió la integración de procesos no-lineales, tales como el acoplamiento esfuerzos-permeabilidad y el fallo de la matriz rocosa, en análisis hidromecánicos acoplados. Este tipo de análisis se aplica actualmente a muchos estudios de ingeniería geológica. Un parámetro clave para ello es la correcta estimación de la relación entre esfuerzos y permeabilidad. Basándose en datos disponibles de laboratorio y de campo, se ha deducido que la permeabilidad de las rocas fracturadas es fundamentalmente sensible a cambios de la tensión a profundidades someras (baja tensión) y en áreas de permeabilidad baja. En secciones de rocas fracturadas muy permeables, el flujo de fluidos puede tener lugar en grupos de fracturas interconectadas que están abiertas como resultado de cizallas previas por dislocación o por cementación parcial del relleno mineral. Estas fracturas abiertas tienden a ser relativamente insensibles a la tensión y pueden por tanto ser conductivas a grandes profundidades. Sin embargo, este artículo pretende destacar la gran variabilidad de las propiedades hidromecánicas en rocas fracturadas, y las dificultades asociadas al uso de datos de laboratorio para estimar propiedades de campo de los materiales. Debido a problemas como la dependencia de las variables con el tamaño, las alteraciones de muestras y el muestreo no representativo, las propiedades hidromecánicas de las rocas fracturadas se caracterizan mejor in situ.

Notes

Acknowledgements

Technical review and comments by Dr. Christopher E. Neuzil, US Geological Survey, Dr. Chin-Fu Tsang, Lawrence Berkeley National Laboratory, and Tech. Lic. Ki-Bok Min, Royal Institute of Technology, Sweden are much appreciated. The following organizations are gratefully acknowledged for their financial support: the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biological Sciences, of the US Department of Energy, under contract no. DE-AC03-76-SF00098; the DECOVALEX Project through the Swedish Nuclear Power Inspectorate; and the European Commission through the BENCHPAR project under contract FIKW-CT-2000-00066.

References

  1. Aki K, Fehler M, Aamodt RL, Albright JN, Potter RM, Pearson CM, Tester JW (1982) Interpretation of sesimic data from hydraulic fracturing experiments at the Fenton, Hill New Mexico, Hot Dry Rock Geothermal site. J Geophys Res 87:936–951Google Scholar
  2. Alm P (1999) Hydro-mechanical behavior of a pressurized single fracture: an in situ experiment. PhD Thesis, Chalmers University, SwedenGoogle Scholar
  3. Alonso EE, Gens A, Delahaye CH (2003) Influence of rainfall on the deformation and stability of a slope in overconsolidated clays. A case study. Hydrogeol J (in press) DOI 10.1007/s10040-002-0245-1Google Scholar
  4. Apps J, Tsang C-F (1996) Preface. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, CaliforniaGoogle Scholar
  5. Bäckblom G, Martin CD (1999) Recent experiments in hard rock to study the excavation response: Implication of the performance of a nuclear waste geological repository. Tunnel Underground Space Technol 14:377–394CrossRefGoogle Scholar
  6. Bai M, Feng F, Elsworth D, Roegiers J-C (1999) Analysis of stress-dependent permeability in nonorthogonal flow and deformation. Rock Mech Rock Eng 32:195–219CrossRefGoogle Scholar
  7. Bandis S, Lumsden AC, Barton NR (1983) Fundamentals of rock joint deformation. Int J Rock Mech Mining Sci Geomech Abstr 20:249–268Google Scholar
  8. Barenblatt GI, Zheltov IP, Kochina (1960) Basic concepts in the theory of homogenous liquids in fissured rocks. Prikl Mat Mekh 24:852–864Google Scholar
  9. Baria R, Baumgärtner J, Rummel F, Pine RJ, Sato Y (1999a) HDR/HWR reservoirs: concepts, understanding and creation. Geothermics 28:533–552CrossRefGoogle Scholar
  10. Baria R, Baumgärtner J, Gérard A, Jung R, Garnish J (1999b) European HDR research programme at Soultz-sous-Forets (France) 1987–1996. Geothermics 28:655–669CrossRefGoogle Scholar
  11. Barton NR, Choubey (1977) The shear strength of rock joints in theory and practice. Rock Mech 10:1–54Google Scholar
  12. Barton NR, Bakhtar K (1982) Rock joint description and modeling for the hydrothermomechanical design of nuclear waste repositories. TerraTek Engineering, Salt Lake City, Utah, Tech Rep 83-10Google Scholar
  13. Barton NR, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Mining Sci Geomech Abstr 22:121–140Google Scholar
  14. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686CrossRefGoogle Scholar
  15. Barton CA, Hickman SH, Morin R, Zooback MD (1998) Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal fields. Soc Petrol Eng SPE Pap 47371Google Scholar
  16. Bernabe Y (1986) The effective pressure law for permeability in Chelmford granite and Barre granite. Int J Rock Mech Mining Sci Geomech Abstr 23:267–275Google Scholar
  17. Biot MA (1941) A general theory of three dimensional consolidation. J Appl Phys 12:155–164Google Scholar
  18. Biot MA (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185Google Scholar
  19. Biot MA (1956) General solutions of the equation of elasticity and consolidation for a porous material. J Appl Phys 27:240–253Google Scholar
  20. Biot MA, Willis DG (1957) The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601Google Scholar
  21. Boitnott GN (1991) Mechanical and transport properties of joints. PhD Thesis, Columbia University, New YorkGoogle Scholar
  22. Börgesson L, Pusch R, Fedriksson A, Hökmark H, Karnland O, Sandén S (1992) Final report of the zones disturbed by blasting and stress release. Swedish Nuclear Fuel and Waste Management Co (SKB), Stockholm, Stripa Proj Tech Rep 92-08Google Scholar
  23. Brace WF, Walsh JB, Frangos WT (1968) Permeability of granite under high pressure. J Geophys Res 73:2225–2236Google Scholar
  24. Brasier FM, Kobelsky BJ (1996) Injection of industrial wastes in the United States. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 1–8Google Scholar
  25. Brower KR, Morrow NR (1985) Fluid flow in cracks as related to low permeability gas sands. Soc Petrol Eng J 25:191–201Google Scholar
  26. Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92:1337–1347Google Scholar
  27. Brown DW (1993) Recent flow testing of the HDR reservoir at Fenton Hill, New Mexico. Geotherm Resour Council Bull 22:208–214Google Scholar
  28. Brown SR, Scholz CH (1986) Closure of rock joints. J Geophys Res 91:4939–4948Google Scholar
  29. Bruno MS, Srinivasa MM, Danyluk PM, Hejl KA, Anduisa JP (1998) Fracture injection of solid oilfield wastes at the West Coyote field in California. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47371Google Scholar
  30. Byerlee JD (1978) Friction in rocks. J Pure Appl Geophys 73:615–626Google Scholar
  31. Carder DS (1945) Seismic investigation in the Boulder Dam area, 1940–1945, and influence of reservoir loading on earthquake activity. Bull Seismol Soc Am 35:175–192Google Scholar
  32. Carlsson A, Olsson T (1977) Hydraulic properties of the Swedish crystalline rocks—hydraulic conductivity and its relationship to depth. Bull Geol Inst Univ Uppsala 7:71–84Google Scholar
  33. Carlsson A, Olsson T (1979) Hydraulic conductivity and its stress dependency. In: Proc Organization Econ Coop Dev-Nucl Energy Agency OECD-NEA Int Atom Energy Agency IAEA Worksh Low-flow, Low-permeability Measurements in Largely Impermeable Rocks, 19–20 March, Paris. OECD, Paris, pp 249–260Google Scholar
  34. Carlsson A, Olsson T (1986) Large scale in-situ test on stress and water flow relationships in fractured rock. Swedish State Power Board Tech RepGoogle Scholar
  35. Chen H-Y, Teufel LW (1997) Coupling fluid flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs. Soc Petrol Eng SPE Pap 47371Google Scholar
  36. Clark JB (1949) A hydraulic process for increasing the productivity of wells. Petrol Trans AIME 186:1–8Google Scholar
  37. Cypser AC, Davis SD (1998) Induced seismicity and the potential for liability under U.S. law. Tectonophysics 289:239–255CrossRefGoogle Scholar
  38. Davies JP, Davies JK (1999) Stress-dependent permeability: characterization and modeling. Soc Petrol Eng SPE Pap 56813PubMedGoogle Scholar
  39. Detournay E, Cheng H-D (1993) Fundamentals of poroelasticity. In: Hudson JA (ed) Comprehensive rock engineering. Pergamon, Oxford, vol 1, pp 395–412Google Scholar
  40. Doe TW (1999) Evaluating fracture network geometry from hydraulic field data at underground test facilities. In: Faybishenko B (ed) Proc Int Symp Dynamics of Fluids in Fractured Rocks. Lawrence Berkeley National Laboratory, Berkeley, California, pp 65–70Google Scholar
  41. DOE (1999) Carbon sequestration research and development. In: Reichle D et al. (eds) US Dept Energy, Rep DOE/SC/FE-1, Washington, DCGoogle Scholar
  42. Dusseault M (1997) Geomechanics in oil and gas exploration and drilling. In: Program 1st Asian Rock Mechanics Symp, 13–15 October, Seoul, pp 100–114Google Scholar
  43. Dusseault MB, Bilak RA, Bruno MS, Rothenburg L (1996) Disposal of granular solid wastes in the western Canadian sedimentary basic by slurry injection. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 725–742Google Scholar
  44. Dyke C (1995) How sensitive is natural fracture permeability at depth to variation of in effective stress? In: Myer L, Cook NGW, Goodman D, Tsang C-F (eds) Fracture and jointed rock masses. Balkema, Rotterdam, pp 81–88Google Scholar
  45. Eliasson TM, Sundquist U, Wallroth T (1990) Circulation experiments in 1989 at Fjällbacka HDR test site. Dept Geology, Chalmers University, Rep Fj-10Google Scholar
  46. Elliot GM, Brown ET, Boodt PI, Hudson JA (1985) Hydromechanical behavior of joint in the Carmenelis granite, SW England. In: Stephansson O (ed) Proc Int Symp Fundamentals of Rock Joints, 15–20 September, Börkliden, Sweden, Centek, Luleå, Sweden, pp 249–258Google Scholar
  47. Emsley S, Olsson O, Stenberg L, Alheid H-J, Fall S (1997) ZEDEX—a study of damage and disturbance from tunnel excavation by blasting and tunnel boring. Swedish Nuclear Fuel Waste Management Co (SKB), Stockholm, Tech Rep 97-30Google Scholar
  48. Engelder T, Scholz CH (1981) Fluid flow along very smooth joints at effective pressures up to 200 megapascals. In: Carter NL (ed) Mechanical behavior of crustal rocks. Am Geophys Union, Monograph 24, Washington, DC, pp 147–152Google Scholar
  49. Esaki T, Du S, Mitani Y, Ikusada K, Jing L (1999) Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint. Int J Rock Mech Mining Sci Geomech Abstr 36:641–650CrossRefGoogle Scholar
  50. Evans D (1966) The Denver area earthquakes and the Rocky Mountain Arsenal Disposal Well. Mtn Geol 3:23–36Google Scholar
  51. Evans KF, Kohl T, Hopkirk RJ, Rybach L (1992) Modeling of energy production from hot dry rock systems. Proj Rep Eidgenössische Technische Hochschule (ETH), Zürich, SwitzerlandGoogle Scholar
  52. Evans KF, Cornet FH, Hashida T, Hayashi K, Ito T, Matsuki K, Wallroth T (1999) Stress and rock mechanics issues of relevance to HDR/WDR engineered geothermal systems: review of developments during the past 15 years. Geothermics 28:455–474CrossRefGoogle Scholar
  53. Fairhurst C (1964) Measurements of in situ rock stresses with particular reference to hydraulic fracturing. Rock Mech Eng Geol 2:129–147Google Scholar
  54. Ferrill D, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada. Geol Soc Am, GSA Today, May 1999Google Scholar
  55. Gale J (1975) A numerical, field and laboratory study of flow in rock with deformable fractures. PhD Thesis, University of California, BerkeleyGoogle Scholar
  56. Galloway D, Jones DR, Ingebritsen SE (eds) (1999) Land subsidence in the United States. US Geol Surv Circ 182Google Scholar
  57. Gambolati GP, Freeze A (1973) Mathematical simulation of the subsidence of Venice. I. Theory. Water Resour Res 9:721–733Google Scholar
  58. Gambolati G, Ricceri G, Bertoni W, Brighenti G, Vuillermin E (1991) Mathematical simulation of the subsidence of Ravenna. Water Resour Res 27:2899–2918Google Scholar
  59. Gangi AF (1978) Variation of whole and fractured porous rock permeability with confining pressure. Int J Rock Mech Mining Sci Geomech Abstr 15:249–257Google Scholar
  60. Gaucher E, Cornet FH, Bernard P (1998) Induced seismicity analysis for structure identification and stress field determination. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47324(1), pp 545–554Google Scholar
  61. Geertsma J (1957) The effect of fluid-pressure decline on volumetric changes of porous rocks. Trans AIME 210:331–339Google Scholar
  62. Geertsma J (1966) Problems of rock mechanics in petroleum production engineering. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol I, pp 585–594Google Scholar
  63. Geertsma J (1973) Land subsidence above compacting oil and gas reservoirs. J Petrol Tech 25:734–744Google Scholar
  64. Geertsma J, Deklerk F (1969) A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol Tech 21:1571–1581Google Scholar
  65. Gerrard CM (1982) Elastic models of rock masses having one, two and three sets of joints. Int J Rock Mech Mining Sci Geomech Abstr 19:15–23Google Scholar
  66. Ghaboussi J, Wison EL (1973) Flow of compressible fluids in porous elastic media. Int J Numer Methods Eng 5:419–442Google Scholar
  67. Goodman RE (1970) Deformability of joints. In: Proc Symp Determination of the In-situ Modulus of Deformation of Rock, 2–7 February, Denver, Colorado. ASTM Spec Tech Publ 477, pp 174–196Google Scholar
  68. Goodman RE (1974) The mechanical properties of joints. In: Proc 3rd Int Congr International Society of Rock Mechanics, 1–7 September 1974, Denver, Colorado. National Academy of Sciences, Washington, DC, vol I, pp 127–140Google Scholar
  69. Goodman RE (1976) Methods of geological engineering in discontinuous rock. West Publishing, New YorkGoogle Scholar
  70. Gupta HK (1992) Reservoir induced earthquakes. Elsevier, New YorkGoogle Scholar
  71. Gutierrez M, Lewis RW (1998) The role of geomechanics in reservoir simulation. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47392, pp 439–448Google Scholar
  72. Gutierrez M, Barton N, Makurat A (1995) Compaction and subsidence in North Sea hydrocarbon fields. In: Yoshinaka R, Kikuchi K (eds) Proc Int Worksh Rock Foundation, 30 September 1995, Tokyo, Japan. Balkema, Rotterdam, pp 57–64Google Scholar
  73. Habib P (1987) The Malpasset dam failure. Eng Geol 24:331-338Google Scholar
  74. Haimson BC, Fairhurst C (1967) Initiation and extension of hydraulic fractures in rocks. Soc Petrol Eng J Sept:310–318Google Scholar
  75. Hainey BW, Keck RG, Smith MB, Lynch KW, Barth JW (1997) On-site disposal of oilfield waste solids in Wilmington Field, Long Beach Unite, CA. Soc Petrol Eng SPE Pap 47371Google Scholar
  76. Hakami E (1995) Aperture distribution of rock fractures. PhD Thesis, Royal Institute of Technology, SwedenGoogle Scholar
  77. Harpalani S, Chen G (1995) Estimation of changes in fracture porosity of coal with gas emission. Fuel 74:1491–1498CrossRefGoogle Scholar
  78. Harpalani S, Schraufnagel RA (1990) Shrinkage of coal matrix with release of gas and its impact on permeability of coal. Fuel 199:551–556Google Scholar
  79. Hayashi K, Abé H (1989) Evaluation of hydraulic properties of the artificial subsurface system in Higashihachimantai geothermal model field. J Geotherm Res Soc Jpn 11:203–215Google Scholar
  80. Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The Denver earthquakes. Science 161:1301–1310Google Scholar
  81. Heiland J (2003) Laboratory testing of coupled hydro-mechanical processes during rock deformation. Hydrogeol J (in press) DOI 10.1007/s10040-002-0236-2Google Scholar
  82. Henkel H (2002) The Bjökö geothermal energy project. Norges Geol Undersök Bull 439:45–50Google Scholar
  83. Hsieh PA, Bredehoeft JD (1981) A reservoir analysis of the Denver earthquakes: a case of induced seismicity. J Geophys Res 86:903–925Google Scholar
  84. Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. J Petrol Tech 9:153–168Google Scholar
  85. Ito T, Zoback MD (2000) Fracture permeability and in situ stress to 7 km depth in the KTB scientific drillhole. Geophys Res Lett 27:1045–1048CrossRefGoogle Scholar
  86. Iwai K (1976) Fundamental studies of fluid flow through a single fracture. PhD Thesis, University of California, BerkeleyGoogle Scholar
  87. Iwano M (1995) Hydromechanical characteristics of a single rock joint. PhD Thesis, Massachusetts Institute of TechnologyGoogle Scholar
  88. Jacob CE (1940) On the flow of ground water in a elastic artesian aquifer. Trans Am Geophys Union 22:783–787Google Scholar
  89. Jacob CE (1950) Flow of groundwater. In: Engineering hydraulics. Wiley, New York, pp 321–386Google Scholar
  90. Jing L, Hudson JA (2002) Numerical methods in rock mechanics. Int J Rock Mech Mining Sci 39:409–427CrossRefGoogle Scholar
  91. Jones FO Jr (1975) A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. J Petrol Tech 27:21–27Google Scholar
  92. Jones FO, Ovens WW (1980) A laboratory study of low permeability gas sands. J Petrol Eng 32:1631–1640Google Scholar
  93. Jung R (1989) Hydraulic in situ investigation of an artificial fracture in the Falkenberg granite. Int J Rock Mech Mining Sci Geomech Abstr 26:301–308Google Scholar
  94. Jupe AJ, Green ASP, Wallroth (1992) Induced microseismicity and reservoir growth at the Fjällbacka Hot Dry Rock Project, Sweden. Int J Rock Mech Mining Sci Geomech Abstr 29:343–354Google Scholar
  95. Kilmer NH, Morrow NR, Pitman JK (1987) Pressure sensitivity of low permeability sandstones. J Petrol Sci Eng 1:65–81Google Scholar
  96. Koutsabeloulis NC, Hope SA (1998) "Coupled" stress/fluid/thermal multi-phase reservoir simulation studies incorporating rock mechanics. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47392, pp 449–454Google Scholar
  97. Kranz RL, Frankel AD, Engelder T, Scholz CH (1979) The permeability of whole and jointed barre granite. Int J Rock Mech Mining Sci Geomech Abstr 16:225–234Google Scholar
  98. Lee C-I, Chang K-M (1995) Analysis of permeability change and groundwater flow around underground oil storage cavern in Korea. In: Fujii T (ed) Proc 8th Int Congr Rock Mechanics, 25–29 September 1995, Tokyo. Balkema, Rotterdam, pp 779–782Google Scholar
  99. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, New YorkGoogle Scholar
  100. Lewis RW, Sukirman Y (1993) Finite element modeling of three-phase flow in deforming saturated oil reservoirs. Int J Numer Anal Methods Geomech 17:577–598Google Scholar
  101. Lewis RW, Pao WKS, Makurat A (2003) Fully coupled modeling of seabed subsidence and reservoir compaction of North Sea oil fields. Hydrogeol J (in press) DOI 10.1007/s10040-002-0239-zGoogle Scholar
  102. Liu J, Elsworth D (1997) Three-dimensional effects of hydraulic conductivity enhancement and desaturation around mined panels. Int J Rock Mech Mining Sci 34:1139–1152CrossRefGoogle Scholar
  103. Liu J, Elsworth D, Brady BH (1999) Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int J Rock Mech Mining Sci 36:581–596CrossRefGoogle Scholar
  104. Londe P (1987) The Malpasset dam failure. Eng Geol 24:295–329Google Scholar
  105. Londe P, Sabarly F (1966) La distribution des perméabilités dans la fondation des barrages voûtés en fonction du champ de contrainte. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol II, pp 517–522Google Scholar
  106. Louis C, Maini Y (1970) Determination of in situ hydraulic parameters in jointed rock. In: Proc 2nd Int Congr Rock Mechanics, 21–26 September 1970, Belgrade. Inst Dev Water Resour, Belgrade, vol I, pp 235–245Google Scholar
  107. Louis C, Dessenne J-L, Feuga B (1977) Interaction between water flow phenomena and the mechanical behavior of soil or rock masses. In: Gudehus G (ed) Finite elements in geomechanics. Wiley, New York, pp 479–511Google Scholar
  108. Makurat A, Barton N, Rad NS (1990) Joint conductivity variation due to normal and shear deformation. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 535–540Google Scholar
  109. Martin CD, Davison CC, Kozak ET (1990) Characterizing normal stiffness and hydraulic conductivity of a major shear zone in granite. In: Barton N, Stephansson O (eds) Rock joints. Balkema, Rotterdam, pp 549–556Google Scholar
  110. Meinzer OE (1928) Compressibility and elasticity of artesian aquifers. Econ Geol 23:263–291Google Scholar
  111. Myer LR (1991) Hydromechanical and seismic properties of fractures. In: Wittke W (ed) Proc 7th Int Congr Rock Mechanics, Aachen, Germany. Balkema, Rotterdam, pp 397–404Google Scholar
  112. Nagelhout ACG, Roest JPA (1997) Investigating fault slip in a model of underground gas storage facility. Int J Rock Mech Mining Sci Geomech Abstr 34, Pap no 212Google Scholar
  113. Nakatsuka K (1999) Field characterization for HDR/WDR: a review. Geothermics 28:519–531CrossRefGoogle Scholar
  114. National Research Council (1996) Rock Fractures and fluid flow. National Academy Press, Washington, DCGoogle Scholar
  115. Neuzil CE (1986) Ground water flow in low-permeability environments. Water Resour Res 22:1163–1195Google Scholar
  116. Neuzil CE (2003) Hydromechanical coupling in geologic processes. Hydrogeol J (in press) DOI 10.1007/s10040-002-0230-8>Google Scholar
  117. Neuzil CE, Tracy JV(1981) Flow through fractures. Water Resour Res 17:191–199Google Scholar
  118. Nicholson C, Wesson RL (1992) Triggered earthquakes and deep well activities. Pure Appl Geophys 139:561–578Google Scholar
  119. Nolte KG (1991) Fracturing-pressure analysis for nonideal behavior. J Petrol Tech Feb 1991:210–218Google Scholar
  120. Noorishad J (1971) Finite element analysis of rock mass behavior under coupled action of body forces, fluid flow, and external loads. PhD Thesis, University of California, BerkeleyGoogle Scholar
  121. Noorishad J, Ayatollahi MS, Witherspoon PA (1982) A finite element method for coupled stress and fluid flow analysis of fractured rocks. Int J Rock Mech Mining Sci Geomech Abstr 19:185–193Google Scholar
  122. Noorishad J, Tsang C-F, Witherspoon PA (1992) Theoretical and field studies of coupled hydromechanical behavior of fracture rocks. 1. Development and verification of a numerical simulator. Int J Rock Mech Mining Sci Geomech Abstr 29:401–409Google Scholar
  123. Nur A, Byerlee JD (1971) An exact effective stress law for elastic deformation of rock with fluids. J Geophys Res 76:6414–6419Google Scholar
  124. Oda M (1982) Fabric tensor for discontinuous geological materials. Soils Found 22:96–108Google Scholar
  125. Olsson O (1992) Site characterization and validation—final report: Stripa Project. Swedish Nuclear Fuel Waste Management Co, Stockholm, Rep TR 92-22Google Scholar
  126. Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Mining Sci 38:317–329CrossRefGoogle Scholar
  127. Osoiro JG, Chen H-Y, Teufel LW, Schaffer S (1998) A two-domain, 3D, fully coupled fluid flow/geomechanical simulation model for reservoirs with stress sensitive mechanical and fluid-flow properties. In: Proc Symp EUROCK '98 Rock Mechanics in Petroleum Engineering, 8–10 July 1998, Trondheim, Norway. Soc Petrol Eng SPE Pap 47397, pp 455–464Google Scholar
  128. Patton FD (1966) Multiple modes of shear failure in rock. In: Proc 1st Int Congr Rock Mechanics, 25 September–1 October 1966, Lisbon. Lab Nac Eng Civil, Lisbon, vol I, pp 509–513Google Scholar
  129. Perkins TK, Kern LR (1961) Widths of hydraulic fractures. J Petrol Tech Sept 1961:937–949Google Scholar
  130. Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Mining Sci 21:249–263Google Scholar
  131. Pratt WE, Johnson DW (1926) Local subsidence of the Goose Creek oil field. J Geol 34:577–590Google Scholar
  132. Pratt HR, Swolfs HS, Brace WF, Black AD, Handin JW (1977) Elastic and transport properties of an in situ jointed granite. Int J Rock Mech Mining Sci Geomech Abstr 14:35–45Google Scholar
  133. Pyrak-Nolte L, Myer LJ, Cook NGW, Witherspoon PA (1987) Hydraulic and mechanical properties of natural fractures in low permeability rock. In: Herget G, Vongpaisal S (eds) Proc 6th Congr International Society of Rock Mechanics, Montreal. Balkema, Rotterdam, vol 1, pp 225–231Google Scholar
  134. Raven KG, Gale JE (1985) Water flow in a natural rock fracture as a function of stress and sample size. Int J Rock Mech Mining Sci Geomech Abstr 22:251–261Google Scholar
  135. Read RS, Chandler NA (1999) Excavation damage and stability studies at the URL. In: Amadei B, Kranz RL, Scott GA, Smeallie PH (eds) Proc 37th US Rock Mechanics Symp, 6–9 June 1999, Vail, Colorado. Balkema, Rotterdam, vol 2, pp 861–868Google Scholar
  136. Reed AC, Mathews JL, Bruno MS, Olmstead SE (2001) Chevron safely disposes one million barrels of NORM in Louisiana through slurry fracture injection. Soc Petrol Eng SPE Pap 47371Google Scholar
  137. Rejeb A (1996) Mathematical simulation of coupled THM processes of Fanay-Augéres field test by distinct element and discrete finite element methods. In: Stephansson O, Jing L, Tsang C-F (eds) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, Amsterdam, pp 341–369Google Scholar
  138. Rhén I, Gustafson G, Stanford R, Wikberg P (1997) Äspö HRL—geoscientific evaluation 1997-5: models based on site characterization 1986-1995. Swedish Nuclear Fuel Waste Management Co (SKB) Tech Rep 97-06Google Scholar
  139. Rice JR, Cleary MP (1976) Some basic stress diffusion solutions of fluid saturation elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241Google Scholar
  140. Richards HG, Parker RH, Green ASP, Jones RH, Nicholls JDM, Nichol DAC, Randall MM, Stewart RC, Willis-Richards J (1994) The performance characteristics of the experimental Hot Dry Rock Geothermal Reservoir at Rosemanowes, Cornwall (1985–1988). Geothermics 23:73–109Google Scholar
  141. Rutqvist J (1995a) Coupled stress-flow properties of rock joints from hydraulic field testing. PhD Thesis, Royal Institute of Technology, SwedenGoogle Scholar
  142. Rutqvist J (1995b) Determination of hydraulic normal stiffness of fractures in hard rock from hydraulic well testing. Int J Rock Mech Mining Sci Geomech Abstr 32:513–523CrossRefGoogle Scholar
  143. Rutqvist (1995c) Hydraulic pulse testing of single fractures in porous and deformable rocks. Q J Eng Geol 29:181–192Google Scholar
  144. Rutqvist J, Tsang C-F (2002) Analysis of thermal-hydrologic-mechanical behavior near an emplacement drift at Yucca Mountain. J Contaminant Hydrol (in press)Google Scholar
  145. Rutqvist J, Tsang C-F, Ekman D, Stephansson O (1997) Evaluation of in situ hydromechanical properties of rock fractures at Laxemar in Sweden. In: Lee H-K, Yang H-S, Chung S-K (eds) Proc 1st Asian Rock Mechanics Symp ARMS 97, 13–15 October 1997, Seoul, Korea. Balkema, Rotterdam, pp 619–624Google Scholar
  146. Rutqvist J, Tsang C-F, Stephansson O (1998) Determination of fracture storativity in hard rocks using high pressure testing. Water Resour Res 34:2551–2560Google Scholar
  147. Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Mining Sci 39:429–442CrossRefGoogle Scholar
  148. Sandhu RS, Wilson EL (1969) Finite-element analysis of seepage in elastic media. J Eng Mech Div ASCE 95:641–652Google Scholar
  149. Sasaki S (1998) Characteristics of microseismic events induced during hydraulic fracturing experiments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics 289:171–188CrossRefGoogle Scholar
  150. Scheidegger AE (1974) The physics of flow through porous media. University of Toronto Press, TorontoGoogle Scholar
  151. Schmidt JH, Friar WL, Bill ML, Cooper GD (1999) Large scale injection of North Slope drilling cuttings. Soc Petrol Eng SPE Pap 52738Google Scholar
  152. Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press, New YorkGoogle Scholar
  153. Segall P (1989) Earthquakes triggered by fluid extraction. Geology 17:942–946CrossRefGoogle Scholar
  154. Segall P, Fitzgerald SD (1998) A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289:17–128CrossRefGoogle Scholar
  155. Simpson DW, Leith WS, Scholz CH (1988) Two types of reservoir-induced seismicity. Bull Seismol Soc Am 78:2025–2040Google Scholar
  156. Snow DT (1965) A parallel plate model of fractured permeable media. PhD Thesis, University of California, BerkeleyGoogle Scholar
  157. Snow DT (1968) Rock fracture spacings, openings, and porosities. J Soil Mech Found Div ASCE 73-91Google Scholar
  158. Snow DT (1969) Anisotropic permeability of fractured media. Water Resour Res 5:1273–1289Google Scholar
  159. Souley M, Homand F, Pepa S, Hoxha D (2001) Damage-induced permeability changes in granite: a case example at the URL in Canada. Int J Rock Mech Mining Sci 38:297–310CrossRefGoogle Scholar
  160. Stephansson O, Jing L, Tsang C F (eds) (1996) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, AmsterdamGoogle Scholar
  161. Stietel A, Millard A, Treille E, Vuillod E, Thoravel A, Ababou R (1996) Continuum representation of coupled hydromechanical processes of fractured media. In: Stephansson O, Jing L, Tsang C-F (eds) Coupled thermo-hydro-mechanical processes of fractured media. Elsevier, Amsterdam, pp 135–164Google Scholar
  162. Stowel JFW, Laubch SE, Olson JE (2001) Effect of modern state of stress on flow-controlling fractures: a misleading paradigm in need of revision. In: Elsworth D, Tinucci JP, Heasley KA (eds) Proc 38th US Rock Mechanics Symp, 7–10 July 2001, Washington, DC. Balkema, Rotterdam, vol I, pp 691–697Google Scholar
  163. Sugihara K, Matsu H, Sato T (1999) In situ experiments on rock stress conditions and excavation disturbance in JNC's geoscientific research program in Japan. In: Saeb S, Francke C (eds) Proc Int Worksh Rock Mechanics of Nuclear Waste Repositories, 5–6 June, Veil, Colorado, pp 159–183Google Scholar
  164. Sutton S, Soley R, Jeffery C, Chackrabarty C, McLeod R (1996) Cross hole hydraulic testing between deep boreholes 2 and 4 at Sellafield. European Commission, Brussels, Nuclear Sci Technol Topical Rep EUR 16967Google Scholar
  165. Swan G (1983) Determination of stiffness and other properties from roughness measurements. Rock Mech Rock Eng 16:19–38Google Scholar
  166. Takahashi M, Koide H, Xue Z-Q (1995) Correlation between permeability and deformational characteristics on the Shirahama sandstone and Inada granite. In: Fujii T (ed) Proc 8th Int Congr Rock Mechanics, 25–29 September 1995, Tokyo. Balkema, Rotterdam, pp 417–420Google Scholar
  167. Talbot CJ, Sirat M (2001) Stress control of hydraulic conductivity in fractured-saturated Swedish bedrock. Eng Geol 61:145–153CrossRefGoogle Scholar
  168. Terzaghi K (1923) Die Berechnung der Durchlässigkeitziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad Wissensch Wien Sitzungsber Math-naturwissensch Klasse IIa 142(3/4), pp 125–138Google Scholar
  169. Teufel LW, Farrel HE (1995) Interrelationship between in situ stress, natural fractures, and reservoir permeability anisotropy—A case study of the Ekofisk Field, North Sea. In: Myer L, Cook NGW, Goodman D, Tsang C-F (eds) Fracture and jointed rock masses. Balkema, Rotterdam, pp 573–578Google Scholar
  170. Theis CV (1935) The relationship between the lowering of the piesometric surface and rate and duration of the discharge of a well using groundwater storage. Trans Am Geophys Union 2:519–524Google Scholar
  171. Thury M, Bossart P (1999) The Mont Terri rock laboratory, a new international research project in a Mesozoic shale formation, in Switzerland. Eng Geol 52:347–359CrossRefGoogle Scholar
  172. Tsang C-F (1987) Introduction to coupled processes. In: Tsang C-F (ed) Coupled processes associated with nuclear waste repositories. Academic Press, Orlando, pp 1–6Google Scholar
  173. Tsang YW, Witherspoon PA (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res 86:9287–9298Google Scholar
  174. Van-Golf Racht TD (1982) Fundamentals of fractured reservoir engineering. Elsevier, AmsterdamGoogle Scholar
  175. Verruijt (1969) Elastic storage of aquifers. In: DeWiest RJM (ed) Flow through porous media. Academic Press, New York, pp 331–376Google Scholar
  176. Walsh JB (1965) The effect of cracks on the compressibility of rock. J Geophys Res 70:381–389Google Scholar
  177. Walsh JB (1981) Effects of pore pressure and confining pressure on fracture permeability. Int J Rock Mech Mining Sci Geomech Abstr 18:429–435Google Scholar
  178. Wang HF (2000) Theory of linear poroelasticity. Princeton University Press, 287 pGoogle Scholar
  179. Wang JSY, Elsworth D (1999) Permeability changes induced by excavation in fractured tuff. In: Amadei B, Kranz RL, Scott GA, Smeallie PH (eds) Proc 37th US Rock Mechanics Symp, 6–9 June 1999, Vail, Colorado. Balkema, Rotterdam, vol 2, pp 751–758Google Scholar
  180. Wang J-A, Park HD (2002) Fluid permeability of sedimentary rocks in a complete stress-strain process. Eng Geol 63:291–300CrossRefGoogle Scholar
  181. Wang J, Cook P, Trautz R, Flexser S, Hu Q, Salve R, Hudson D, Conrad M, Tsang Y, Williams K, Soll W, Turin J (2001) In-situ field testing of processes ANL-NBS-HS-000005 REV01. Bechtel SAIC Co, Las Vegas, NevadaGoogle Scholar
  182. Wei Z-Q, Hudson JA (1988) Permeability of jointed rock masses. In: Romana M (ed) Rock mechanics and power plants. Balkema, Rotterdam, pp 613–626Google Scholar
  183. Withers RJ, Perkins TK, Keck RG (1996) A field demonstration of hydraulic fracturing for solid waste disposal. In: Apps J, Tsang C-F (eds) Deep injection of disposal of hazardous industrial waste. Scientific and engineering aspects. Academic Press, San Diego, California, pp 705–724Google Scholar
  184. Witherspoon PA (2000) The Stripa project. Int J Rock Mech Mining Sci 37:385–396CrossRefGoogle Scholar
  185. Witherspoon PA, Amick CH, Gale JE, Iwai K (1979) Observations of a potential size effect in experimental determination of the hydraulic properties of fractures. Water Resour Res 15:1142–1146Google Scholar
  186. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024Google Scholar
  187. Wladis D, Jönsson P, Wallroth T (1997) Regional characterization of hydraulic properties or rock using well test data. Swedish Nuclear Fuel Waste Management Co (SKB) Tech Rep 97-29Google Scholar
  188. Xiao HT, Xu HY (2000) In situ permeability measurements to establish the influence of slice mining on floor rock. Int J Rock Mech Mining Sci 37:855–860CrossRefGoogle Scholar
  189. Yoshinaka R, Yoshida J, Arai H, Arisaka S (1993) Scale effects on shear and deformability of rock joints. In: Pinto da Chunha A (ed) Proc Symp Scale Effects in Rock Masses 93, 25 June 1993, Lisbon, Portugal. Balkema, Rotterdam, pp 143–149Google Scholar
  190. Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the Crarnmenellis granite. Q J Eng Geol 25:279–290Google Scholar
  191. Zienkiewics OC, Pande GN (1977) Time-dependent multilaminate model of rocks-a numerical study of deformation and failure of rock masses. Numer Anal Methods Geomech 1:219–247Google Scholar
  192. Zoback MD, Byerlee JD (1975) The effect of microcrack dilatancy on the permeability of westerly granite. J Geophys Res 80:752–755Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryEarth Sciences DivisionBerkeleyUSA
  2. 2.Royal Institute of TechnologyDepartment of Land and Water Resources EngineeringStockholmSweden
  3. 3.GeoForschungsZentrumPotsdamGermany

Personalised recommendations