Behandlung spinaler Duraverletzungen

  • T. Hoell
  • G. Huschak
  • A. Beier
  • S. Beier
  • C. Hohaus
  • H.-J. Meisel
Leitthema
  • 134 Downloads

Zusammenfassung

Der dichte Duraverschluss ist notwendig, weil sonst die Gefahr der Ausbildung von Liquorzysten- und (-)fisteln besteht, die schwer zu behandeln sind. In ungünstigen Fällen kann es auf diesem Weg zu aufsteigenden Infektionen kommen. Der übliche Duraverschluss erfolgt mittels Naht, es können aber auch Fibrinkleber und klebebeschichtete Vliese eingesetzt werden. Bei größeren Duradefekten werden bevorzugt autologe oder allogene Duraersatzmaterialen verwendet. Synthetische Materialien werden vielfältig angeboten, weisen etwas ungünstigere Verarbeitungseigenschaften auf, gelten aber hinsichtlich der Übertragung von Krankheitserregern als unkritischer. Im vorliegenden Beitrag wird über die Techniken des Duraverschlusses, den Einsatz von selbst klebendem Vlies und über weiterführende Techniken beim Vorliegen spinaler Duradefekte berichtet.

Schlüsselwörter

Duradefekt Liquorzysten Infektion Dichter Duraverschluss Duraersatzmaterialen  

Treatment of spinal dural injuries

Abstract

Tight dural closure is necessary to avoid the risk of liquor cysts and fistulas, which are difficult to treat. In unfavourable cases, ascending infections are promoted in this way. Dural closure is usually performed with suturing; however, fibrin glue and coated collagen membranes can be used. In the case of large dural defects, autologous or allogeneic dural replacement materials are preferably used. Although many synthetic materials are available, these are less easy to work with; however, they are considered less of a risk in terms of the transmission of pathogens. The present article reports on dural closure techniques, the use of self-gluing membrane, as well as other techniques used in the case of spinal dural defects.

Keywords

Dural defect Liquor cysts Infection Tight dural closure Dural replacement materials 

Literatur

  1. 1.
    Abbe R (1895) Rubber tissue for meningeal adhesion. Trans Am Surg Assoc 13:490–491Google Scholar
  2. 2.
    Beach H (1897) Gold foil in cerebral sugery. Boston Med Surg J 136:281–282Google Scholar
  3. 3.
    Bhatia S, Bergethon PR, Blease S et al (1995) A synthetic dural prosthesis constructed from hydroxyethylmethacrylate hydrogels. J Neurosurg 83:897–902PubMedCrossRefGoogle Scholar
  4. 4.
    Brown M, Grindlay J, Craig W (1948) The use of polyethylene film as a dural substitute: an experimental and clinical study. Surg Gynecol Obstet 86:663–669PubMedGoogle Scholar
  5. 5.
    Campbell J, Bassett C, Robertson J (1958) Clinical use of freeze-dried human dura mater. J Neurosurg 15(2):207–214PubMedCrossRefGoogle Scholar
  6. 6.
    Delarue N, Linell E, McKenzie K (1944) Experimental study on the use of tantalum in the subdural space. J Neurosurg 1:239–242CrossRefGoogle Scholar
  7. 7.
    Epstein NE, Hollingsworth R (2003) Does donor site reconstruction following anterior cervical surgery diminish postoperative pain? J Spinal Disord Tech 16:20–26PubMedGoogle Scholar
  8. 8.
    Ernestus RI, Ketter G, Klug N (1995) Duraersatz bei intrakraniellen Operationen. Zentralbl Neurochir 56:106–110PubMedGoogle Scholar
  9. 9.
    Filippi R, Schwarz M, Voth D et al (2001) Bovine pericardium for duraplasty: clinical results in 32 patients. Neurosurg Rev 24:103–107PubMedCrossRefGoogle Scholar
  10. 10.
    Harris M (1904) The use of silver foil to prevent adhesion in brain surgery. JAMA 19:763–765Google Scholar
  11. 11.
    Hoell T, Hohaus C, Huschak G et al (2007) Total dura substitute in the spine: double layer dural substitute made from polylactide layer and bovine pericardium. Acta Neurochir (Wien) 149:1259–1262Google Scholar
  12. 12.
    Huertas J (1955) The use of orlon for dural replacement. J Neurosurg 12:550–554PubMedCrossRefGoogle Scholar
  13. 13.
    Kawaguchi T, Hosoda K, Shibata Y et al (2003) Expanded polytetrafluoroethylene membrane for prevention of adhesions in patients undergoing external decompression and subsequent cranioplasty. Neurol Med Chir (Tokyo) 43:320–323CrossRefGoogle Scholar
  14. 14.
    Klopp LS, Welch WC, Tai JW et al (2004) Use of polylactide resorbable film as a barrier to postoperative peridural adhesion in an ovine dorsal laminectomy model. Neurosurg Focus 16:E2PubMedCrossRefGoogle Scholar
  15. 15.
    Leiggener CS, Curtis R, Müller AA et al (2006) Influence of copolymer composition of polylactide implants on cranial bone regeneration. Biomaterials 27:202–207PubMedCrossRefGoogle Scholar
  16. 16.
    Maher CO, Anderson RE, McClelland RL et al (2003) Evaluation of a novel propylene oxide-treated collagen material as a dural substitute. J Neurosurg 99:1070–1076PubMedCrossRefGoogle Scholar
  17. 17.
    Matsui S, Sadaike T, Hamada C et al (2005) Creutzfeldt-Jakob disease and cadaveric dura mater grafts in Japan: an updated analysis of incubation time. Neuroepidemiology 24:22–25PubMedCrossRefGoogle Scholar
  18. 18.
    Richter AG (1798) Anfangsgründe der Wundarzneykunst. Dietrich, Göttingen Google Scholar
  19. 19.
    Serino G, Biancu S, Iezzi G et al (2003) Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res 14:651–658PubMedCrossRefGoogle Scholar
  20. 20.
    Teng P, Eigin I (1955) Vinyon N as a dural substitute; an experimental study in the monkey. J Neurosurg 12:591–600PubMedCrossRefGoogle Scholar
  21. 21.
    Thammavaram KV, Benzel EC, Kesterson L (1990) Fascia lata graft as a dural substitute in neurosurgery. South Med J 83:634–636PubMedCrossRefGoogle Scholar
  22. 22.
    Unsal B, Ozcan G, Tuter G et al (1999) Evaluation of initial attachment of human gingival fibroblast cells to biodegradable membranes in vitro by light and scanning electron microscopy. J Oral Sci 41:57–60PubMedGoogle Scholar
  23. 23.
    Van de BD, de GJ, Spanjaard L et al (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351:1849–1859CrossRefGoogle Scholar
  24. 24.
    Welch WC, Thomas KA, Cornwall GB et al (2002) Use of polylactide resorbable film as an adhesion barrier. J Neurosurg 97:413–422PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • T. Hoell
    • 1
    • 2
  • G. Huschak
    • 3
  • A. Beier
    • 1
  • S. Beier
    • 1
  • C. Hohaus
    • 2
  • H.-J. Meisel
    • 2
  1. 1.Praxis-Klinik NeurochirurgieKlinikum Mittelbaden Baden-BadenDeutschland
  2. 2.Klinik für NeurochirurgieBG-Kliniken BergmannstrostHalle, SaaleDeutschland
  3. 3.Klinik und Poliklinik für Anästhesiologie und IntensivtherapieUniversitätsklinikum LeipzigLeipzigDeutschland

Personalised recommendations