Advertisement

Journal of Human Genetics

, Volume 53, Issue 2, pp 185–191 | Cite as

Genome-wide demethylation during neural differentiation of P19 embryonal carcinoma cells

  • Izuho HatadaEmail author
  • Sumiyo Morita
  • Mika Kimura
  • Takuro Horii
  • Riu Yamashita
  • Kenta Nakai
Short communication
  • 77 Downloads

Abstract

Epigenetic regulation including DNA methylation plays an important role in several differentiation processes. We profiled global DNA methylation in the neural differentiation of P19 embryonic carcinoma cells using a microarray-based method called MIAMI. We found a genome-wide demethylation of genes. This suggests demethylation rather than methylation is important in neural differentiation.

Keywords

Methylation Epigenetics Demethylation Genome-wide Profiling 

Notes

Acknowledgments

This study was supported in part by grants from the Japanese Science and Technology Agency, the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Ministry of Health, Labor, and Welfare of Japan.

Supplementary material

10038_2007_228_MOESM1_ESM.xls (19 kb)
(XLS 19 kb)
10038_2007_228_MOESM2_ESM.xls (69 kb)
(XLS 69 kb)
10038_2007_228_MOESM3_ESM.xls (700 kb)
(XLS 699 kb)

References

  1. Bird AP (1987) CpG islands as gene markers in the vertebrate nucleus. Trends Genet 3:342-347CrossRefGoogle Scholar
  2. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6-21PubMedCrossRefGoogle Scholar
  3. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457-463PubMedCrossRefGoogle Scholar
  4. Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258-D261PubMedCrossRefGoogle Scholar
  5. Hatada I, Fukasawa M, Kimura M, Morita S, Yamada K, Yoshikawa T, Yamanaka S, Endo C, Sakurada A, Sato M, Kondo T, Horii A, Ushijima T, Sasaki H (2006) Genome-wide profiling of promoter methylation in human. Oncogene 25:3059-3064PubMedCrossRefGoogle Scholar
  6. Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571-610PubMedCrossRefGoogle Scholar
  7. Kremenskoy M, Kremenska Y, Ohgane J, Hattori N, Tanaka S, Hashizume K, Shiota K (2003) Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun 311:884-890PubMedCrossRefGoogle Scholar
  8. Jeltsch A (2002) Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem 3:274-293PubMedCrossRefGoogle Scholar
  9. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915-926PubMedCrossRefGoogle Scholar
  10. Li E, Beard C, Jaenisch R (1993)Role for DNA methylation in genomic imprinting. Nature 366:362-365PubMedCrossRefGoogle Scholar
  11. Ohgane J, Aikawa J, Ogura A,Hattori N, Ogawa T, Shiota K (1998) Analysis of CpG islands of trophoblast giant cells by restriction landmark genomic scanning. Dev Genet 22:132-140PubMedCrossRefGoogle Scholar
  12. Otero JJ, Fu W, Kan L, Cuadra AE, Kessler JA (2004) Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 131:3545-3557PubMedCrossRefGoogle Scholar
  13. Razin A, Webb C, Szyf M, Yisraeli J, Rozanthal A, Naveh-Many T, Sciaky-Gallili N Cedar H (1984) Variation in DNA methylation during mouse cell differentiation in vivo and in vitro. Proc Natl Acad Sci USA 81:2275-2279PubMedCrossRefGoogle Scholar
  14. Runnicki, Mcbruney (1987) Cell culture methods and induction of differentiation of embryonal carcinoma cell line. In: Roberson EJ (ed) Teratocarcinomas and embryonic stem cells. IRL Press, pp 19-49Google Scholar
  15. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 102:3336-3341PubMedCrossRefGoogle Scholar
  16. Xiong Z, Laird PW (1997). COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532-2534PubMedCrossRefGoogle Scholar
  17. Yeivin A, Levine A, Razin A (1996) DNA methylation patterns in tumors derived from F9 cells resemble methylation at the blastula stage. FEBS Lett 395:11-16PubMedCrossRefGoogle Scholar
  18. Yuasa S, Hattori K, Yagi T (2004) Defective neocortical development in Fyn-tyrosine-kinase-deficient mice. Neuroreport 15:819-822PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Human Genetics and Springer 2008

Authors and Affiliations

  • Izuho Hatada
    • 1
    Email author
  • Sumiyo Morita
    • 1
  • Mika Kimura
    • 1
  • Takuro Horii
    • 1
  • Riu Yamashita
    • 2
  • Kenta Nakai
    • 2
  1. 1.Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular RegulationGunma UniversityMaebashiJapan
  2. 2.Laboratory of Functional Analysis in silico, Human Genome Center, Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations